scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of Circadian Effectiveness in Lighting for Office Applications

28 Jul 2021-Applied Sciences (Multidisciplinary Digital Publishing Institute)-Vol. 11, Iss: 15, pp 6936
TL;DR: A novel methodological framework for spatially resolved light measurements is proposed that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions and is compared to standard spectral radiometry to validate the accuracy of the proposed approach.
Abstract: As one factor among others, circadian effectiveness depends on the spatial light distribution of the prevalent lighting conditions. In a typical office context focusing on computer work, the light that is experienced by the office workers is usually composed of a direct component emitted by the room luminaires and the computer monitors as well as by an indirect component reflected from the walls, surfaces, and ceiling. Due to this multi-directional light pattern, spatially resolved light measurements are required for an adequate prediction of non-visual light-induced effects. In this work, we therefore propose a novel methodological framework for spatially resolved light measurements that allows for an estimate of the circadian effectiveness of a lighting situation for variable field of view (FOV) definitions. Results of exemplary in-field office light measurements are reported and compared to those obtained from standard spectral radiometry to validate the accuracy of the proposed approach. The corresponding relative error is found to be of the order of 3–6%, which denotes an acceptable range for most practical applications. In addition, the impact of different FOVs as well as non-zero measurement angles will be investigated.
Citations
More filters
Journal ArticleDOI
TL;DR: The findings are that LEDs with lower CRI values at warm color temperatures and LEDs with higher CRIvalues at cool temperatures provide the right level of color attributes for office lighting.
Abstract: In this study, two experiments were conducted to investigate the effects of the color rendering index (CRI) and correlated color temperature (CCT) of light-emitting diode (LED) lighting on office user acceptance and to explore the proper color attributes for human-centric office lighting. Experiment 1 had four LED lights, with two levels for the CRI (CRI < 80: 79, 76; or CRI ≥ 80: 83, 84) and CCT (3000 K or 6500 K) at 300 lux. In experiment 2, there were four LED lights, with several levels for the CRI (CRI < 80: 78; or CRI ≥ 80: 87, 83) and CCT (3000 K or 6500 K) at 500 lux. Ninety-six participants in experiment 1 and ninety-four participants in experiment 2 performed a reading task. The results in experiment 1 and experiment 2 showed that LEDs with lower CRI values at warm color temperatures were rated as more acceptable than LEDs with higher CRI values at warm color temperatures. However, the positive effect extended to LEDs with higher CRI values at cool temperatures but not to LEDs with lower CRI values at cool temperatures. Therefore, the findings are that LEDs with lower CRI values at warm color temperatures and LEDs with higher CRI values at cool temperatures provide the right level of color attributes for office lighting.

4 citations

Journal ArticleDOI
TL;DR: In this article , the non-visual content was evaluated using novel metrics, the Autonomy of Circadian Potential and Circadian Autonomy, which assess temporal circadian luminous content.
Abstract: The difference between the functioning of the human non-visual and photopic systems has elicited the need for complex in situ measurements or time-consuming multi-spectral simulations to accurately predict the non-visual luminous content of the indoor environment. As such methodologies are time-consuming, the aim of the present study was to determine whether such complex methodologies are needed. The issue was studied through simulations of four cardinally oriented identical offices located in Ljubljana, Slovenia. Each was studied using orange, grey and blue walls. Diurnal luminous conditions were studied under clear, hazy and overcast skies on December, March and June 21st. The non-visual content was evaluated using novel metrics, the Autonomy of Circadian Potential and Circadian Autonomy, which assess temporal circadian luminous content. Diurnal results were used to construct climate-based spectral months to evaluate the monthly non-visual potential of the studied offices. Furthermore, simulations addressed the question of whether the requirements of the non-visual system might contradict the visual comfort of indoor environments. The results show that compliance with non-visual requirements for indoor spaces with spectrally neutral surfaces or those in shades of blue could be assessed using photopic methodologies. However, this is not true for spaces characterised by orange and red materials.

1 citations

Journal ArticleDOI
TL;DR: The use of RGB color sensors is shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications and is suitable for estimates of the physiologically relevant circadian stimulus (CS) metric.
Abstract: The three main tasks of modern lighting design are to support the visual performance, satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual and non-visual illumination parameters seems to be of great promise for the future development of human-centered lighting control systems. In this context, the present work proposes a new methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that the CIE daylight model can be applied as an intermediate step to estimate its spectral composition, from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian effectiveness of both types of illumination with sufficient accuracy for practical applications.

1 citations

Journal ArticleDOI
TL;DR: A review of the main metrics developed so far to correlate physical properties of light and its effects on melatonin suppression is presented in this paper , where the authors present milestones in this research field, together with discussion on the advances, limitations and perspectives of application for distinct available models.
Abstract: This review presents the main metrics developed so far to correlate physical properties of light and its effects on melatonin suppression. Melatonin is a hormone secreted at night and its production is suppressed by exposure to light. In this context, the negative effects of lighting at night and high exposure to light raise the need for a better quantification of these impacts on health. Different light action spectroscopy methodologies have been recently used to characterize the circadian response mediated by melatonin in humans, but there is so far no consensus on a main validated model. While complementary studies are still necessary to reach such an ideal model, here we analyze and compare the results of works that developed and tested metrics based on the absorption curves of human melanopsin, rods and cones, and on the dynamics of melatonin suppression in different light regimes. These studies reveal how the spectral composition, irradiance and temporality of light modulate the function of human melatonin. We present milestones in this research field, together with discussion on the advances, limitations and perspectives of application for distinct available models. Applied to different contexts, this knowledge can bring favorable changes to health in environmental lighting projects, production of ophthalmic lenses, screens, filters, films, and other optical devices.
Journal ArticleDOI
18 May 2022-PLOS ONE
TL;DR: The current work provides the study protocol for an ongoing research project that is intended to explore the spectral dependencies and to discuss measures of emotional state and cognitive functioning potentially related to the cortisol awakening response.
Abstract: Cortisol secretion has a fundamental role in human circadian regulation. The cortisol awakening response (CAR) can be observed as a daily recurring sharp increase in cortisol concentration within the first hour after awakening and is influenced by environmental light conditions. The current work provides the study protocol for an ongoing research project that is intended to explore the spectral dependencies and to discuss measures of emotional state and cognitive functioning potentially related to the CAR. Based on a controlled within-subjects sleep laboratory study, the impact of a two-hour, (quasi-)monochromatic, post-awakening light exposure of different peak wavelength (applied from 6:00 to 8:00 am) on resulting CAR levels should be investigated in a systematic manner to eventually derive a corresponding spectral sensitivity model. As a secondary outcome, it should be explored whether a potentially light-enhanced cortisol secretion might also impact different measures of sleepiness, mood, and vigilance for certain wavelengths. The study protocol described in the present work discusses the various protocol steps using pilot data collected for two different wavelength settings (i.e., short-wavelength blue-light at λmax = 476 nm and long-wavelength red-light at λmax = 649 nm) experienced by a group of four healthy male adults at an average ± SD age of 25.25 ± 3.59 years.
References
More filters
Journal ArticleDOI
TL;DR: The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cellphotopigments for vision.
Abstract: The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.

1,708 citations

Journal ArticleDOI
TL;DR: It is concluded that the shape of the iodopsin absorption spectrum provides a reasonable basis for computation of absorption spectra of the middleand long-wavelength sensitive cone pigments and that long-Wavelength sensitive cones of deuteranopes.

1,263 citations

Journal ArticleDOI
TL;DR: The data strongly support a primary role for a novel short‐wavelength photopigment in light‐induced melatonin suppression and provide the first direct evidence of a non‐rod, non‐cone photoreceptive system in humans.
Abstract: 1 Non-image forming, irradiance-dependent responses mediated by the human eye include synchronisation of the circadian axis and suppression of pineal melatonin production The retinal photopigment(s) transducing these light responses in humans have not been characterised 2 Using the ability of light to suppress nocturnal melatonin production, we aimed to investigate its spectral sensitivity and produce an action spectrum Melatonin suppression was quantified in 22 volunteers in 215 light exposure trials using monochromatic light (30 min pulse administered at circadian time (CT) 16-18) of different wavelengths (lambda(max) 424, 456, 472, 496, 520 and 548 nm) and irradiances (07-650 microW cm(-2)) 3 At each wavelength, suppression of plasma melatonin increased with increasing irradiance Irradiance-response curves (IRCs) were fitted and the generated half-maximal responses (IR(50)) were corrected for lens filtering and used to construct an action spectrum 4 The resulting action spectrum showed unique short-wavelength sensitivity very different from the classical scotopic and photopic visual systems The lack of fit (r(2) or =073) Of these, the best fit was to the rhodopsin template with lambda(max) 459 nm (r(2) = 074) 5 Our data strongly support a primary role for a novel short-wavelength photopigment in light-induced melatonin suppression and provide the first direct evidence of a non-rod, non-cone photoreceptive system in humans

1,232 citations

Journal ArticleDOI
TL;DR: It is demonstrated that humans are highly responsive to the phase‐delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effect of light on plasma melatonin follow a logistic dose‐response curve, as do many circadian responses to light in mammals.
Abstract: Ocular exposure to early morning room light can significantly advance the timing of the human circadian pacemaker. The resetting response to such light has a non-linear relationship to illuminance. The dose-response relationship of the human circadian pacemaker to late evening light of dim to moderate intensity has not been well established. Twenty-three healthy young male and female volunteers took part in a 9 day protocol in which a single experimental light exposure6.5 h in duration was given in the early biological night. The effects of the light exposure on the endogenous circadian phase of the melatonin rhythm and the acute effects of the light exposure on plasma melatonin concentration were calculated. We demonstrate that humans are highly responsive to the phase-delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effects of light on plasma melatonin follow a logistic dose-response curve, as do many circadian responses to light in mammals. Contrary to expectations, we found that half of the maximal phase-delaying response achieved in response to a single episode of evening bright light ( approximately 9000 lux (lx)) can be obtained with just over 1 % of this light (dim room light of approximately 100 lx). The same held true for the acute suppressive effects of light on plasma melatonin concentrations. This indicates that even small changes in ordinary light exposure during the late evening hours can significantly affect both plasma melatonin concentrations and the entrained phase of the human circadian pacemaker.

1,052 citations

Journal ArticleDOI
TL;DR: These data provide a comprehensive characterization of the human phase response curves (PRCs) to single bright light exposures under highly controlled laboratory conditions.
Abstract: The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

888 citations

Trending Questions (1)
What is the effectiveness of Microsoft applications in office employees?

The provided paper does not mention the effectiveness of Microsoft applications in office employees. The paper is about measuring the circadian effectiveness of lighting in office applications.