scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of resistance curves in the longitudinal failure of composites using digital image correlation

TL;DR: In this paper, the authors presented a new methodology to measure the crack resistance curves associated with fiberdominated failure modes in polymer-matrix composites, which is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates.
About: This article is published in Composites Science and Technology.The article was published on 2010-11-15 and is currently open access. It has received 175 citations till now. The article focuses on the topics: Digital image correlation & Composite laminates.

Summary (2 min read)

1. Introduction

  • Sophisticated kinematic representations of failure mechanisms [8,9], and cohesive elements to deal with delamination [10,11], the accurate prediction of intralaminar fracture mechanisms still presents several challenges.
  • While this assumption is valid under smallscale bridging conditions, the shape of the cohesive law plays a fundamental role in the prediction of fracture under large-scale bridging conditions [12].
  • To account for these different failure mechanisms, a combined linear-exponential softening law for fiber tensile fracture has been proposed [5,6], and it was demonstrated that a simple linear softening law is unable to predict the load–displacement relation obtained in a cross-ply Compact Tension (CT) test specimen, while a bi-linear softening law provides an accurate prediction [13].
  • In addition, the experimental determination of the exact location of the tip of a kink-band is even more difficult than for the CT specimens.
  • An automatic algorithm that post-processes the full-field data provided by the DIC system during the CT and CC tests is used to detect the crack tip location and to establish the R-curve from the surface measurements of the displacement and strain fields.

2. Identification of the crack tip location

  • The algorithm used to identify the crack tip location in the CT and CC test specimens is based on the work of Grégoire [19].
  • The contour integral J, which is defined along a region where the material is linear-elastic, is therefore used to calculate the crack resistance curve of the CC and CT test specimens.
  • The same happens with the sum of the thicknesses of the all the 90 plies.
  • To simplify the calculations, the simple rectangular contour shown in Fig. 6 is selected.
  • The differentials dx1 and dx2 are taken as the differences between the centers of adjoining subsets, measured along the corresponding axes.

4.1. Configuration of the test specimens

  • The material used in this work is unidirectional carbon-fiber reinforced epoxy Hexcel IM7-8552.
  • The elastic properties of IM7-8552, measured in a previous investigation [18], are shown in Table 1. E1 and E2 are the longitudinal and transverse.
  • The specimens were finally machined to their final geometry, shown in Fig. 7 (CT specimen), and in Fig. 8 (CC specimen).
  • In the set-up, the optical system was positioned perpendicular to the surface of the specimen mounted into the testing machine (Fig. 9).
  • The facet step (i.e., the distance between adjacent facets) can also be set either for controlling the total number of measuring points over the region of interest, or for enhancing the spatial resolution by slightly overlapping adjacent facets.

4.2. Compact tension

  • The load was measured using the 100 kN load cell, and the displacement was measured using the linear variable differential transformer (LVDT) connected to the hydraulic actuator of the test machine.
  • Fig. 12 shows a good correlation between the FEM and DIC data reduction methods.
  • This means that the fracture process zone that bridges the crack has a minor effect on the displacement and strain fields in the regions where the Finite Element model computes the J-integral.
  • Fig. 13 shows the R-curves obtained from the three CT tests.
  • Fig. 13 also shows the mean value of the fracture process zone, 3.4 mm, and the mean values of the initial fracture toughness and that corresponding to steady-state crack propagation, 97.8 kJ/m2 and 133.3 kJ/m2 respectively.

4.3. Compact compression

  • A non-linear response is observed in the load–displacement relation before the peak load is attained.
  • The reason for this fact is that the FEM-based calculation of the J-integral does not account for the contact and load transfer across the band of the kinked fibers.
  • On the other hand, the DIC-based method uses the actual displacement and strain fields on the surface of the specimen, provided that the contours selected do not include delaminated regions, thus resulting in an improved R-curve.
  • Delamination associated with the propagation of the kink-band from the initial notch was also observed in the CC tests.
  • In addition, the presence of delamination invalidates the assumption of a two-dimensional crack, and of constant strain through the thickness of the laminate (assumption used in Eq. (6)).

5. Conclusions

  • This paper presents a new method to measure the crack resistance curves in CT and CC test specimens manufactured using cross-ply CFRP composite laminates.
  • The method was implemented in a ”Matlab” code that obviates the need of any complex pre- and post-processing of the test data, either based on FEM or standard data reduction methods, and enables the real-time generation of R-curves during a test.
  • The mean value of the associated cohesive zone is 3.4 mm.
  • The DIC-based method is an improvement over FE-based data reduction methods because it is based on the actual displacement field on a pre-defined contour that does not include delaminated regions.
  • The values computed for the fracture toughness using the CC specimen do not account for the energy dissipated by the delamination that accompanied the propagation of the kink-band.

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an improved Extended Digital Image Correlation (X-DIC) method was proposed to measure the discontinuous deformation across the crack in order to find an appropriate shape function which can enhance the performance of X-Dic.

22 citations

Journal ArticleDOI
TL;DR: In this article, an analytical framework is proposed to predict the notched response of balanced carbon fiber-reinforced polymer laminates using only three ply properties as inputs: the longitudinal Young's modulus, the longitudinal strength, and the R-curve of the 0° plies.
Abstract: Advanced non-linear Finite Element models for the strength prediction of composite laminates normally result in long computing times that are not suitable for preliminary sizing and optimisation of structural details. Macro-mechanical analytical models, in spite of providing quick predictions, are based on properties determined from tests performed at the laminate level, making preliminary design and optimisation of composite structures still too costly in terms of testing requirements. To overcome these disadvantages, an analytical framework is proposed to predict the notched response of balanced carbon fibre-reinforced polymer laminates using only three ply properties as inputs: the longitudinal Young’s modulus, the longitudinal strength, and the R-curve of the 0° plies. This framework is based on invariant-based approaches to predict the stiffness and the strength of general laminates, and an analytical model to estimate the R-curve of balanced laminates. These laminate properties are then used in a Finite Fracture Mechanics model to predict size effects. The predictions for open-hole tension and compression tests are compared with experimental results obtained from the literature for five different material systems. Good agreement is observed considering that only three ply properties are used as inputs for the analytical framework.

21 citations

Journal ArticleDOI
TL;DR: In this article, the authors used nonlinear least squares method and conservation integrals to estimate crack-tip field parameters and characterize R -curve behaviors of translaminar fracture in cross-ply composite laminates using digital image correlation.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the crack resistance curve of the unidirectional carbon-epoxy composite material IM7-8552 for intralaminar fiber tensile failure under dynamic loading was determined.

20 citations

Journal ArticleDOI
01 Oct 2015-Strain
TL;DR: In this paper, the impact of a complex shape of sample and the appearance of a displacement discontinuity on performances of measurement by local Digital Image Correlation (DIC) is studied.
Abstract: In this paper, we study the impact of a complex shape of sample and the appearance of a displacement discontinuity on performances of measurement by local Digital Image Correlation (DIC). Both cases are modelled from synthetic images into two parts: one with a speckle field and another part without speckle or two parts with similar speckle fields but with different kinematics. The accuracy of displacement measurements assessed for DIC subsets crossing the boundary between the two parts is lower than the one obtained without discontinuity and justifies adapting DIC method. A new local DIC process is presented in detail. It is an alternative way able to take into account any shape of sample and several curved lines of discontinuity in the same subset. Two experimental examples are presented: displacement and strain fields obtained by DIC and adapted DIC are compared. We can conclude that it is possible to lead a mechanical analysis until the limits of the sample and even during the appearance and the propagation of a crack.

19 citations

References
More filters
Journal ArticleDOI
James R. Rice1
TL;DR: In this paper, an integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials.
Abstract: : An integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials. The integral may be evaluated almost by inspection for a few notch configurations. Also, for materials of the elastic- plastic type (treated through a deformation rather than incremental formulation) , with a linear response to small stresses followed by non-linear yielding, the integral may be evaluated in terms of Irwin's stress intensity factor when yielding occurs on a scale small in comparison to notch size. On the other hand, the integral may be expressed in terms of the concentrated deformation field in the vicinity of the notch tip. This implies that some information on strain concentrations is obtainable without recourse to detailed non-linear analyses. Such an approach is exploited here. Applications are made to: Approximate estimates of strain concentrations at smooth ended notch tips in elastic and elastic-plastic materials, A general solution for crack tip separation in the Barenblatt-Dugdale crack model, leading to a proof of the identity of the Griffith theory and Barenblatt cohesive theory for elastic brittle fracture and to the inclusion of strain hardening behavior in the Dugdale model for plane stress yielding, and An approximate perfectly plastic plane strain analysis, based on the slip line theory, of contained plastic deformation at a crack tip and of crack blunting.

7,468 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed fracture analysis of structural members made of FRP composites and derived the fracture angle which is the key for this evaluation, which is derived in the present paper.

1,529 citations

Journal ArticleDOI
TL;DR: In this paper, a thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio, and a constitutive equation is developed to model the initiation and propagation of delamination.

820 citations


"Measurement of resistance curves in..." refers background in this paper

  • ...Despite the significant advances in the analysis models for the prediction of fracture in composite materials such as advanced failure criteria and associated damage models [1–7], sophisticated kinematic representations of failure mechanisms [8,9], and cohesive elements to deal with delamination [10,11], the accurate prediction of intralaminar fracture mechanisms still presents several challenges....

    [...]

Journal ArticleDOI
TL;DR: In this article, an anisotropic damage model suitable for predicting failure and post-failure behavior in fiber-reinforced materials is presented, which is intended to predict behavior of elastic-brittle materials that show no significant plastic deformation before failure.
Abstract: This paper presents an anisotropic damage model suitable for predicting failure and post-failure behavior in fiber-reinforced materials. In the model the plane stress formulation is used and the response of the undamaged material is assumed to be linearly elastic. The model is intended to predict behavior of elastic-brittle materials that show no significant plastic deformation before failure. Four different failure modes – fiber tension, fiber compression, matrix tension, and matrix compression – are considered and modeled separately. The onset of damage is predicted using Hashin’s initiation criteria [Hashin Z, Rotem A. A fatigue failure criterion for fiber-reinforced materials. J Compos Mater 1973;7:448; Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech 1980;47:329–34] and the progression of damage is controlled by a new damage evolution law, which is easy to implement in a finite element code. The evolution law is based on fracture energy dissipation during the damage process and the increase in damage is controlled by equivalent displacements. The issues related to numerical implementation, such as mesh sensitivity and convergence in the softening regime, are also addressed.

769 citations

Journal ArticleDOI
TL;DR: A continuum damage model for the prediction of the onset and evolution of intralaminar failure mechanisms and the collapse of structures manufactured in fiber-reinforced plastic laminates is proposed in this article.

686 citations


"Measurement of resistance curves in..." refers background in this paper

  • ...To account for these different failure mechanisms, a combined linear-exponential softening law for fiber tensile fracture has been proposed [5,6], and it was demonstrated that a simple linear softening law is unable to predict the load–displacement relation obtained in a cross-ply Compact Tension (CT) test specimen, while a bi-linear softening law provides an accurate prediction [13]....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions in "Measurement of resistance curves in the longitudinal failure of composites using digital image correlation" ?

This paper presents a new methodology to measure the crack resistance curves associated with fiberdominated failure modes in polymer–matrix composites.