scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of resistance curves in the longitudinal failure of composites using digital image correlation

TL;DR: In this paper, the authors presented a new methodology to measure the crack resistance curves associated with fiberdominated failure modes in polymer-matrix composites, which is based on the identification of the crack tip location using Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates.
About: This article is published in Composites Science and Technology.The article was published on 2010-11-15 and is currently open access. It has received 175 citations till now. The article focuses on the topics: Digital image correlation & Composite laminates.

Summary (2 min read)

1. Introduction

  • Sophisticated kinematic representations of failure mechanisms [8,9], and cohesive elements to deal with delamination [10,11], the accurate prediction of intralaminar fracture mechanisms still presents several challenges.
  • While this assumption is valid under smallscale bridging conditions, the shape of the cohesive law plays a fundamental role in the prediction of fracture under large-scale bridging conditions [12].
  • To account for these different failure mechanisms, a combined linear-exponential softening law for fiber tensile fracture has been proposed [5,6], and it was demonstrated that a simple linear softening law is unable to predict the load–displacement relation obtained in a cross-ply Compact Tension (CT) test specimen, while a bi-linear softening law provides an accurate prediction [13].
  • In addition, the experimental determination of the exact location of the tip of a kink-band is even more difficult than for the CT specimens.
  • An automatic algorithm that post-processes the full-field data provided by the DIC system during the CT and CC tests is used to detect the crack tip location and to establish the R-curve from the surface measurements of the displacement and strain fields.

2. Identification of the crack tip location

  • The algorithm used to identify the crack tip location in the CT and CC test specimens is based on the work of Grégoire [19].
  • The contour integral J, which is defined along a region where the material is linear-elastic, is therefore used to calculate the crack resistance curve of the CC and CT test specimens.
  • The same happens with the sum of the thicknesses of the all the 90 plies.
  • To simplify the calculations, the simple rectangular contour shown in Fig. 6 is selected.
  • The differentials dx1 and dx2 are taken as the differences between the centers of adjoining subsets, measured along the corresponding axes.

4.1. Configuration of the test specimens

  • The material used in this work is unidirectional carbon-fiber reinforced epoxy Hexcel IM7-8552.
  • The elastic properties of IM7-8552, measured in a previous investigation [18], are shown in Table 1. E1 and E2 are the longitudinal and transverse.
  • The specimens were finally machined to their final geometry, shown in Fig. 7 (CT specimen), and in Fig. 8 (CC specimen).
  • In the set-up, the optical system was positioned perpendicular to the surface of the specimen mounted into the testing machine (Fig. 9).
  • The facet step (i.e., the distance between adjacent facets) can also be set either for controlling the total number of measuring points over the region of interest, or for enhancing the spatial resolution by slightly overlapping adjacent facets.

4.2. Compact tension

  • The load was measured using the 100 kN load cell, and the displacement was measured using the linear variable differential transformer (LVDT) connected to the hydraulic actuator of the test machine.
  • Fig. 12 shows a good correlation between the FEM and DIC data reduction methods.
  • This means that the fracture process zone that bridges the crack has a minor effect on the displacement and strain fields in the regions where the Finite Element model computes the J-integral.
  • Fig. 13 shows the R-curves obtained from the three CT tests.
  • Fig. 13 also shows the mean value of the fracture process zone, 3.4 mm, and the mean values of the initial fracture toughness and that corresponding to steady-state crack propagation, 97.8 kJ/m2 and 133.3 kJ/m2 respectively.

4.3. Compact compression

  • A non-linear response is observed in the load–displacement relation before the peak load is attained.
  • The reason for this fact is that the FEM-based calculation of the J-integral does not account for the contact and load transfer across the band of the kinked fibers.
  • On the other hand, the DIC-based method uses the actual displacement and strain fields on the surface of the specimen, provided that the contours selected do not include delaminated regions, thus resulting in an improved R-curve.
  • Delamination associated with the propagation of the kink-band from the initial notch was also observed in the CC tests.
  • In addition, the presence of delamination invalidates the assumption of a two-dimensional crack, and of constant strain through the thickness of the laminate (assumption used in Eq. (6)).

5. Conclusions

  • This paper presents a new method to measure the crack resistance curves in CT and CC test specimens manufactured using cross-ply CFRP composite laminates.
  • The method was implemented in a ”Matlab” code that obviates the need of any complex pre- and post-processing of the test data, either based on FEM or standard data reduction methods, and enables the real-time generation of R-curves during a test.
  • The mean value of the associated cohesive zone is 3.4 mm.
  • The DIC-based method is an improvement over FE-based data reduction methods because it is based on the actual displacement field on a pre-defined contour that does not include delaminated regions.
  • The values computed for the fracture toughness using the CC specimen do not account for the energy dissipated by the delamination that accompanied the propagation of the kink-band.

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of techniques for the experimental characterisation of the fracture toughness associated with the translaminar (fibre-breaking) failure modes of continuously reinforced laminated composites is presented in this article.

180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the increasing demands in their applications to improve product efficiency, cost-effectiveness and the development of superior specific properties of composite materials/structures.
Abstract: Composite materials/structures are advancing in product efficiency, cost-effectiveness and the development of superior specific properties. There are increasing demands in their applications to loa...

143 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model to predict the strength and damage progression of open-hole composite laminates under compressive loading (OHC) and applied it to study the size effects of OHC.

138 citations


Cites background from "Measurement of resistance curves in..."

  • ...[20] reported a compressive translaminar fracture toughness of 47....

    [...]

  • ...The tensile fracture toughness in the fiber direction is regarded as a lamina property which can be measured using compact tension or four-point bending experiments [20–22]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors presented a computational study of the tensile strength prediction of open-hole laminates using a cohesive zone model and found that neglecting delamination in the numerical models will lead to mesh-dependency and over-estimation on the predicted strength.
Abstract: The tensile strength of open-hole fibre reinforced composite laminates depends on in-plane, thickness and ply lay-up scaling. Translaminar (fibre direction) mode I fracture toughness has recently been experimentally determined to be thickness dependent. This paper presents a computational study of the tensile strength prediction of open-hole laminates using a cohesive zone model. To the authors’ knowledge, it is for the first time in the literature that the thickness-dependence of translaminar fracture toughness is accounted for in the numerical modelling of composites. The thickness size effect in the strength of open-hole composite laminates failed by pull-out is accurately predicted for the first time by a deterministic model. It is found that neglecting delamination in the numerical models will lead to mesh-dependency and over-estimation on the predicted strength. Smeared crack model with cohesive elements to model delamination is able to predict the correct failure mode; but it is found not suitable for accurate strength predictions for laminates failed by delamination.

127 citations

Journal ArticleDOI
TL;DR: In this article, a fully three-dimensional smeared crack model is proposed to predict the onset and propagation of ply failure mechanisms in polymer composites reinforced by unidirectional fibers.

108 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the computational implementation of a new damage model for laminated composites proposed in a previous paper, which is assured by regularizing the energy dissipated at a material point by each failure mechanism.

523 citations


"Measurement of resistance curves in..." refers background in this paper

  • ...To account for these different failure mechanisms, a combined linear-exponential softening law for fiber tensile fracture has been proposed [5,6], and it was demonstrated that a simple linear softening law is unable to predict the load–displacement relation obtained in a cross-ply Compact Tension (CT) test specimen, while a bi-linear softening law provides an accurate prediction [13]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the fracture toughness associated with fiber tensile failure and compressive fibre kinking in a T300/913 carbon-epoxy laminated composite are measured using compact tension and "compact compression" tests respectively.

507 citations


"Measurement of resistance curves in..." refers background or methods in this paper

  • ...15 shows the R-curve measured from the FEM post-processing of the test results obtained by the method proposed by Pinho et al. [14] and the R-curve obtained using the DIC data reduction procedure proposed here....

    [...]

  • ...This result is in agreement with the findings of Pinho et al. [14]....

    [...]

  • ...[14] and that obtained by post-processing the displacement and strain fields measured by the DIC system....

    [...]

  • ...[14] and the R-curve obtained using the DIC data reduction procedure proposed here....

    [...]

  • ...12 shows the R-curve measured from the FEM post-processing of the test results method proposed by Pinho et al. [14] and that obtained by post-processing the displacement and strain fields measured by the DIC system....

    [...]

Journal ArticleDOI
TL;DR: In this article, a new set of phenomenological failure criteria for fiber-reinforced polymer laminates denoted LaRC03 is described, which can predict matrix and fiber failure accurately, without the curve-fitting parameters.
Abstract: A new set of six phenomenological failure criteria for fiber-reinforced polymer laminates denoted LaRC03 is described. These criteria can predict matrix and fiber failure accurately, without the curve-fitting parameters. For matrix failure under transverse compression, the angle of the fracture plane is solved by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix failure in tension and to calculate the associated in situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results.

465 citations

Journal ArticleDOI
TL;DR: A comparison is made between three different speckle patterns originated by the same referenceSpeckle pattern, and it is shown that the size of the speckles combined with thesize of the used pixel subset clearly influences the accuracy of the measured displacements.

456 citations


"Measurement of resistance curves in..." refers background in this paper

  • ...Typically, a larger facet size will improve the precision of the measurements but also will degrade the spatial resolution [22]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors examined the use of a continuum damage model to predict strength and size effects in notched carbon-epoxy laminates and found that the model is the most accurate technique to predict size effects.

430 citations


Additional excerpts

  • ...The elastic properties of IM7-8552, measured in a previous investigation [18], are shown in Table 1....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions in "Measurement of resistance curves in the longitudinal failure of composites using digital image correlation" ?

This paper presents a new methodology to measure the crack resistance curves associated with fiberdominated failure modes in polymer–matrix composites.