scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science (American Association for the Advancement of Science)-Vol. 321, Iss: 5887, pp 385-388
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Experimental results and molecular dynamic simulations revealed that the presence of deoxycholate enhances NaCl rejection in these graphene-based membranes, and these novel hybrid-layered membranes exhibit better chlorine resistance than pure graphene oxide membranes.
Abstract: Carbon nanomaterials are robust and possess fascinating properties useful for separation technology applications, but their scalability and high salt rejection when in a strong cross flow for long periods of time remain challenging. Here, we present a graphene-based membrane that is prepared using a simple and environmentally friendly method by spray coating an aqueous dispersion of graphene oxide/few-layered graphene/deoxycholate. The membranes were robust enough to withstand strong cross-flow shear for a prolonged period (120 h) while maintaining NaCl rejection near 85% and 96% for an anionic dye. Experimental results and molecular dynamic simulations revealed that the presence of deoxycholate enhances NaCl rejection in these graphene-based membranes. In addition, these novel hybrid-layered membranes exhibit better chlorine resistance than pure graphene oxide membranes. The desalination performance and aggressive shear and chlorine resistance of these scalable graphene-based membranes are promising for use in practical water separation applications. Scalable graphene-based membranes reject more than 80% NaCl under aggressive shear for more than 20 h and exhibit chlorine resistance.

280 citations

Journal ArticleDOI
22 Apr 2013-Small
TL;DR: The recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all- carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.
Abstract: Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.

280 citations

Journal ArticleDOI
TL;DR: The properties of few layer (one layer (1 L) to four layer (4 L)) graphenes doped by adsorption and intercalation of Br(2) and I( 2) vapors are investigated and the Raman spectra of the graphene G vibrations are observed as a function of the number of layers.
Abstract: The properties of few layer (one layer (1 L) to four layer (4 L)) graphenes doped by adsorption and intercalation of Br2 and I2 vapors are investigated. The Raman spectra of the graphene G vibrations are observed as a function of the number of layers. There is no evidence for chemical reaction disrupting the basal plane π electron conjugation. Adsorption of bromine on 1 L graphene creates a high doped hole density, well beyond that achieved by electrical gating with an ionic polymer electrolyte. In addition, the 2D Raman band is completely quenched. The 2 L bilayer spectra indicate that the doping by adsorbed I2 and Br2 is symmetrical on the top and bottom layers. Br2 intercalates into 3 L and 4 L graphenes. The combination of both surface and interior doping with Br2 in 3 L and 4 L creates a relatively constant doping level per layer. In contrast, the G spectra of 3 L and 4 L with surface adsorbed I2 indicate that the hole doping density is larger on the surface layers than on the interior layers and tha...

280 citations

Journal ArticleDOI
TL;DR: In this article, a new type of self-powered, visible-light photodetector fabricated from thermally reduced rGO-ZnO hybrid nanostructure was reported.
Abstract: Here we report a new type of self-powered, visible-light photodetector fabricated from thermally reduced rGO–ZnO hybrid nanostructure. The photocurrent generation of the photodetectors under zero-bias enables hybrid rGO–ZnO devices to work like photovoltaic cells, which could power themselves without electrical power input. The thermal treatment at elevated temperature not only reduces graphene oxide (GO) into reduced graphene oxide (rGO), but also dopes the ZnO nanoparticles with carbon atoms, enabling their visible-light photoresponse capability. The pronounced and fast photocurrent generation was attributed to the efficient charge transfer between the rGO and carbon-doped ZnO nanoparticles, which were in intimate contact. The efficient charge transfer of the rGO–ZnO hybrid nanostructures also indicates that there could be applications in other light energy harvesting devices, including solar cells, sensors and visible-light photocatalysis.

279 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study of the lattice dynamics of three-dimensional layered MoS2 and two-dimensional single layer MOS2 based on density functional theory is presented.
Abstract: This paper presents a comparative study of the lattice dynamics of three-dimensional layered MoS2 and two-dimensional single layer MoS2 based on the density functional theory. A comprehensive analysis of energetics and optimized structure parameters is performed using different methods. It is found that the van der Waals attraction between layers of three-dimensional (3D) layered MoS2 is weak but is essential to hold the layers together with the equilibrium interlayer spacing. Cohesive energy, phonon dispersion curves, and corresponding density of states and related properties, such as Born-effective charges, dielectric constants, Raman and infrared active modes are calculated for 3D layered as well as 2D single layer MoS2 using their optimized structures. These calculated values are compared with the experimental data to reveal interesting dimensionality effects. The absence of a weak interlayer interaction in 2D single layer MoS2 results in the softening of some of Raman active modes.

279 citations

References
More filters
Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

10,162 citations

Book
01 Jan 1985
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Abstract: First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

8,520 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations