scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science (American Association for the Advancement of Science)-Vol. 321, Iss: 5887, pp 385-388
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Sep 2012-Carbon
TL;DR: In this paper, a sintered graphene nanoplatelet (GNP) was used as a reinforcing and lubricating phase in ceramic matrix composites synthesized by spark plasma sintering.

260 citations


Cites background from "Measurement of the Elastic Properti..."

  • ...Properties such as high tensile strength (130 GPa) [1] and high Young’s modulus (0.5–1 TPa) [2] make graphene an ideal reinforcement....

    [...]

  • ...The higher distribution of the transverse surface has an elastic modulus of 15.2 ± 2.2 GPa and a hardness of 0.513 ± 0.07 GPa....

    [...]

  • ...3 ± 2.9 GPa and a hardness of 0.284 ± 0.02 GPa....

    [...]

  • ...The tip-area calibration was done using a standard fused quartz substrate of known modulus (69.6 GPa)....

    [...]

  • ...Properties such as high tensile strength (130 GPa) [1] and high Young’s modulus (0....

    [...]

Journal ArticleDOI
01 Nov 2013-Carbon
TL;DR: In this paper, the authors used liquid phase exfoliation and dispersed graphene in an alumina matrix using an ultrasonication and powder processing route, and measured fracture toughness with the indentation and chevron notch methods.

260 citations

Journal ArticleDOI
TL;DR: In this paper, a SiO2-GO nanohybrid was used to improve the water permeability of polysulfone (PSf)-based hybrid membranes by doping with silica nanoparticles.

260 citations

Journal ArticleDOI
Xuqiang Ji1, Yuanhong Xu1, Wen Ling Zhang1, Liang Cui1, Jingquan Liu1 
TL;DR: In this article, the strategies to modify the fibers with graphene and the corresponding effects on the fibers as well as the relevant applications in varied areas were discussed, and a review of the strategies and applications of modifying fibers with Graphene were discussed.
Abstract: Fibrous materials usually have good mechanical, heat-resistant, acid-resistant, alkali-resistant and moisture regained properties which originate from its composition, condensed structure and crosslinking styles. However, these materials often lack of good electrical conductivity, flame retardance, anti-static and anti-radiation properties which are desired for varied specific applications. Graphene, as a new emerging nanocarbon material, has some unique properties including superb thermal and electrical conductivity, strong mechanical and anti-corrosive property, extremely high surface area etc. Therefore, graphene has attracted extensive interests in recent years. Upon modification with graphene, fibers exhibit a number of enhanced or new properties such as adsorption performance, anti-bacteria, hydrophobicity and conductivity which are beneficial for broader applications. In this review, the strategies to modify the fibers with graphene and the corresponding effects on the fibers as well as the relevant applications in varied areas were discussed.

260 citations

Journal ArticleDOI
TL;DR: In this paper, anisotropic mechanical properties are observed for a sheet of graphene along different load directions, attributed to the hexagonal structure of the unit cells of the graphene, and it is shown that the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point.
Abstract: Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress–strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.

259 citations

References
More filters
Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

10,162 citations

Book
01 Jan 1985
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Abstract: First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

8,520 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations