scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
Reads0
Chats0
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Controlled ripple texturing of suspended graphene and ultrathin graphite membranes

TL;DR: The first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains are reported, elucidate the ripple formation process and can be understood in terms of classical thin-film elasticity theory.
Journal ArticleDOI

Graphene-based materials in electrochemistry

TL;DR: This critical review will describe recent advances in the development of graphene-based materials from the standpoint of electrochemistry, involving its unusual electronic structure, extraordinary electronic properties and fascinating electron transport.
Journal ArticleDOI

Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity

TL;DR: In this paper, the authors compared carbon sheets exfoliated from graphite oxide (GO) via two different processes: chemical modification (isocyanate treated GO, iGO) and thermal exfoliation (thermally reduced GO, TRG), and three different methods of dispersion: solvent blending, in situ polymerization, and melt compounding.
Journal ArticleDOI

Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites

TL;DR: In this paper, the initiator molecules were covalently bonded to the graphene surface via a diazonium addition and the succeeding atom transfer radical polymerization linked polystyrene chains (82 wt% grafting efficiency).
Journal ArticleDOI

Ultralight and Highly Compressible Graphene Aerogels

TL;DR: The resulting graphene aerogels with density as low as 3 mg cm(-3) show excellent resilience and can completely recover after more than 90% compression.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)