scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science (American Association for the Advancement of Science)-Vol. 321, Iss: 5887, pp 385-388
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a hierarchical bioinspired nanocomposite materials of poly(vinyl alcohol)/poly(acrylic acid)/carboxylate graphene oxide nanosheet@polydopamine (PVA/PAA/GO-COOH@PDA) were successfully prepared by electrospinning technique, thermal treatment, and polydopamines modification.
Abstract: New hierarchical bioinspired nanocomposite materials of poly(vinyl alcohol)/poly(acrylic acid)/carboxylate graphene oxide nanosheet@polydopamine (PVA/PAA/GO-COOH@PDA) were successfully prepared by electrospinning technique, thermal treatment, and polydopamine modification. The obtained composite membranes are composed of polymeric nanofibers with carboxylate graphene oxide nanosheets, which are anchored on the fibers by heat-induced cross-linking reaction. The preparation process demonstrate eco-friendly and controllable manner. These as-formed nanocomposites were characterized by various morphological methods and spectral techniques. Due to the unique polydopamine and graphene oxide containing structures in composites, the as-obtained composite demonstrate well efficient adsorption capacity toward dye removal, which is primarily due to the specific surface area of electrospun membranes and the active polydopamine/graphene oxide components. In addition, the composite membranes reported here are easy to re...

219 citations

Journal ArticleDOI
TL;DR: The overarching goal of this review is to provide a comprehensive overview of the complex interplay of biological responses of graphene as a function of their physiochemical properties.

219 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the recent significant advances in the synthesis of graphene-based nanomaterials and their applications in energy-related areas and environmental pollution remediation areas, including supercapacitors, lithium ion batteries, solar cells, adsorption, and degradation of organic/inorganic pollutants from large volumes of aqueous solutions in environmental pollution cleanup are discussed.
Abstract: As a fascinating two-dimensional carbon allotrope, graphene has triggered a ‘gold rush’ all over scientific research areas especially since the Nobel Prize for Physics in 2010. To exploit the prominent properties of graphene-based nanomaterials, two important problems are focused in this review: one is the synthesis of these graphene-based nanomaterials with different kinds of well-defined structures, and the other is the effective application of them as active nanomaterials in functional devices or processes. In this critical review, from the viewpoint of chemistry and materials, we give a brief overview of the recent significant advances in the synthesis of graphene-based nanomaterials and their applications in energy-related areas and environmental pollution remediation areas, including supercapacitors, lithium ion batteries, solar cells, adsorption, and degradation of organic/inorganic pollutants from large volumes of aqueous solutions in environmental pollution cleanup. The main challenges and perspectives of the materials for future research are also discussed.

219 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 3D graphene-based macrostructures with excellent functions has been reported for different applications, such as electronics, photonics, sensors and metrology, bioapplications, and environmental pollutant management.

218 citations


Additional excerpts

  • ...As the first two-dimensional (2D) atomic crystal available, graphene possesses many superior physical and chemical properties, such as a large specific surface area [1], high electronic and thermal conductivity [2,3], excellent mechanical strength [4] and is readily chemically functionalized [5,6]....

    [...]

Journal ArticleDOI
TL;DR: To enable excellent strain-dependent performance of transparent graphene conductors, graphene nanoscrolls in between stacked graphene layers, referred to as multilayer graphene/graphene scrolls (MGGs) were created.
Abstract: Two-dimensional materials, such as graphene, are attractive for both conventional semiconductor applications and nascent applications in flexible electronics. However, the high tensile strength of graphene results in fracturing at low strain, making it challenging to take advantage of its extraordinary electronic properties in stretchable electronics. To enable excellent strain-dependent performance of transparent graphene conductors, we created graphene nanoscrolls in between stacked graphene layers, referred to as multilayer graphene/graphene scrolls (MGGs). Under strain, some scrolls bridged the fragmented domains of graphene to maintain a percolating network that enabled excellent conductivity at high strains. Trilayer MGGs supported on elastomers retained 65% of their original conductance at 100% strain, which is perpendicular to the direction of current flow, whereas trilayer films of graphene without nanoscrolls retained only 25% of their starting conductance. A stretchable all-carbon transistor fabricated using MGGs as electrodes exhibited a transmittance of >90% and retained 60% of its original current output at 120% strain (parallel to the direction of charge transport). These highly stretchable and transparent all-carbon transistors could enable sophisticated stretchable optoelectronics.

218 citations

References
More filters
Journal ArticleDOI
TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Abstract: Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process The G peak slightly down-shifts This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area

13,474 citations

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Abstract: In the course of an investigation of the effect of surface scratches on the mechanical strength of solids, some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion. The original object of the work, which was carried out at the Royal Aircraft Estab­lishment, was the discovery of the effect of surface treatment—such as, for instance, filing, grinding or polishing—on the strength of metallic machine parts subjected to alternating or repeated loads. In the case of steel, and some other metals in common use, the results of fatigue tests indicated that the range of alternating stress which could be permanently sustained by the material was smaller than the range within which it was sensibly elastic, after being subjected to a great number of reversals. Hence it was inferred that the safe range of loading of a part, having a scratched or grooved surface of a given type, should be capable of estimation with the help of one of the two hypotheses of rupture commonly used for solids which are elastic to fracture. According to these hypotheses rupture may be expected if (a) the maximum tensile stress, ( b ) the maximum extension, exceeds a certain critical value. Moreover, as the behaviour of the materials under consideration, within the safe range of alternating stress, shows very little departure from Hooke’s law, it was thought that the necessary stress and strain calculations could be performed by means of the mathematical theory of elasticity.

10,162 citations

Book
01 Jan 1985
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Abstract: First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

8,520 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations