scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
Reads0
Chats0
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold.

TL;DR: The graphene/poly(vinylidene fluoride) (PVDF) composites showed an alternative multi-layered structure of graphene sheets and PVDF, which was the lowest percolation threshold ever reported among PVDF-based polymer composites.
Journal ArticleDOI

Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems

TL;DR: Photothermal back-action in a graphene mechanical resonator comprising one end of a Fabry-Perot cavity is demonstrated and a continuous wave laser can be used to cool a graphene vibrational mode or to power a graphene-based tunable frequency oscillator.
Journal ArticleDOI

Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons

TL;DR: Reduced graphene oxide (rGO)/TiO2 heterojunction film is introduced as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons for neural regeneration and brain repair.
Journal ArticleDOI

Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments

TL;DR: In this paper, the postbuckling behavior of GRC laminated plates is modeled using a higher order shear deformation plate theory and the plate-foundation interaction and thermal effects are taken into consideration.
Journal ArticleDOI

Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites

TL;DR: In this paper, a silane functionalized graphene oxides (sGOs) were fabricated with four different self-assembled monolayers (SAMs) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon/epoxy composites.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)