scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
Reads0
Chats0
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine

TL;DR: Nanomedicine Hong Ying Mao,† Sophie Laurent,‡ Wei Chen,*,†,§ Omid Akhavan, Mohammad Imani, Ali Akbar Ashkarran, and Morteza Mahmoudi.
Journal ArticleDOI

Recent developments on graphene and graphene oxide based solid state gas sensors

TL;DR: Graphene, a monolayer of graphite sheet consisting of sp2 hybridized carbon atoms covalently bonded to three other atoms (discovered in 2004), has recently attracted the attention of chemical sensor researchers owing to its unprecedented structural, mechanical and electrical properties.
Journal ArticleDOI

In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites

TL;DR: In this article, the authors reported an efficient method to prepare nylon-6− (PA6−) graphene composites by in situ polymerization of caprolactam in the presence of graphene oxide (GO).
Journal ArticleDOI

Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy

TL;DR: Polarized Raman spectra of optical phonons in graphene monolayers under tunable uniaxial tensile stress constitutes a purely optical method for the determination of the crystallographic orientation of graphene.
Journal ArticleDOI

Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting

TL;DR: In this paper, a first-principles design approach was used to determine that the single-layer group-III monochalcogenides exhibit low formation energies and are suitable for photocatalytic water splitting.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)