scispace - formally typeset
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

Changgu Lee, +4 more
- 18 Jul 2008 - 
- Vol. 321, Iss: 5887, pp 385-388
Reads0
Chats0
TLDR
Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract
We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanical systems in the quantum regime

TL;DR: In this paper, the authors discuss different techniques for sensitive position detection and give an overview of the cooling techniques that are being employed, including sideband cooling and active feedback cooling, and conclude with an outlook of how state-of-the-art mechanical resonators can be improved to study quantum mechanics.
Journal ArticleDOI

Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility

TL;DR: The distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.
Journal ArticleDOI

Contact engineering in organic field-effect transistors

TL;DR: In this paper, the authors review the innovative developments of contact engineering and focus on the mechanisms behind them, and further improvement toward Ohmic contact can be expected along with the rapid advance in material research, which will also benefit other organic and electronic devices.
Journal Article

Effect of Defects on the Intrinsic Strength and Stiffness of Graphene

TL;DR: In this article, the authors report that the two-dimensional elastic modulus of graphene is maintained even at a high density of sp(3)-type defects and that the breaking strength of defective graphene is only 14% smaller than its pristine counterpart in the sp3-defect regime.
Journal ArticleDOI

Subjecting a graphene monolayer to tension and compression

TL;DR: The retainment of such a high critical buckling strain confirms the relative high flexural rigidity of the embedded monolayer.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

The Phenomena of Rupture and Flow in Solids

TL;DR: In this article, the authors investigated the effect of surface scratches on the mechanical strength of solids, and some general conclusions were reached which appear to have a direct bearing on the problem of rupture, from an engineering standpoint, and also on the larger question of the nature of intermolecular cohesion.
Book

Physical properties of crystals

John F. Nye
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Related Papers (5)