scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at sNN=2.76 TeV with the ATLAS detector

Georges Aad1, Brad Abbott2, Jalal Abdallah, A. A. Abdelalim3  +3002 moreInstitutions (178)
01 Feb 2012-Physics Letters B (Elsevier)-Vol. 707, pp 330-348
TL;DR: In this article, the authors describe the measurement of elliptic flow of charged particles in lead-lead collisions at root s(NN) = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC).
About: This article is published in Physics Letters B.The article was published on 2012-02-01 and is currently open access. It has received 265 citations till now. The article focuses on the topics: Elliptic flow & Large Hadron Collider.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review progress in the hydrodynamic description of heavy-ion collisions and discuss how hydrodynamics can be used to extract information on fundamental properties of quantum chromodynamics from experimental data.
Abstract: We review progress in the hydrodynamic description of heavy-ion collisions, focusing on recent developments in modeling the fluctuating initial state and event-by-event viscous hydrodynamic simulations. We discuss how hydrodynamics can be used to extract information on fundamental properties of quantum chromodynamics from experimental data, and review successes and challenges of the hydrodynamic framework.

462 citations

Journal ArticleDOI
TL;DR: In this paper, measurements of two-and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth.

423 citations

Journal ArticleDOI
TL;DR: The Large Hadron Collider (LHC) at CERN started operation with heavy-ion beams, colliding lead nuclei at a center-of-mass energy of 2.76 TeV per nucleon as discussed by the authors.
Abstract: At the end of 2010, the Large Hadron Collider (LHC) at CERN started operation with heavy-ion beams, colliding lead nuclei at a center-of-mass energy of 2.76 TeV per nucleon. These collisions ushere...

382 citations

Journal ArticleDOI
TL;DR: In this article, the second-order and third-order azimuthal anisotropy harmonics of unidentified charged particles, as well as v2v2 of View the MathML sourceKS0 and ViewTheMathML sourceΛ/Λ ǫ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum.

288 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the present status of the search for a phase transition and critical point as well as anomalous transport phenomena in Quantum Chromodynamics (QCD), with an emphasis on the Beam Energy Scan program at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory.

255 citations

References
More filters
Journal ArticleDOI
S. Agostinelli1, John Allison2, K. Amako3, J. Apostolakis4, Henrique Araujo5, P. Arce4, Makoto Asai6, D. Axen4, S. Banerjee7, G. Barrand, F. Behner4, Lorenzo Bellagamba8, J. Boudreau9, L. Broglia10, A. Brunengo8, H. Burkhardt4, Stephane Chauvie, J. Chuma11, R. Chytracek4, Gene Cooperman12, G. Cosmo4, P. V. Degtyarenko13, Andrea Dell'Acqua4, G. Depaola14, D. Dietrich15, R. Enami, A. Feliciello, C. Ferguson16, H. Fesefeldt4, Gunter Folger4, Franca Foppiano, Alessandra Forti2, S. Garelli, S. Gianì4, R. Giannitrapani17, D. Gibin4, J. J. Gomez Y Cadenas4, I. González4, G. Gracia Abril4, G. Greeniaus18, Walter Greiner15, Vladimir Grichine, A. Grossheim4, Susanna Guatelli, P. Gumplinger11, R. Hamatsu19, K. Hashimoto, H. Hasui, A. Heikkinen20, A. S. Howard5, Vladimir Ivanchenko4, A. Johnson6, F.W. Jones11, J. Kallenbach, Naoko Kanaya4, M. Kawabata, Y. Kawabata, M. Kawaguti, S.R. Kelner21, Paul R. C. Kent22, A. Kimura23, T. Kodama24, R. P. Kokoulin21, M. Kossov13, Hisaya Kurashige25, E. Lamanna26, Tapio Lampén20, V. Lara4, Veronique Lefebure4, F. Lei16, M. Liendl4, W. S. Lockman, Francesco Longo27, S. Magni, M. Maire, E. Medernach4, K. Minamimoto24, P. Mora de Freitas, Yoshiyuki Morita3, K. Murakami3, M. Nagamatu24, R. Nartallo28, Petteri Nieminen28, T. Nishimura, K. Ohtsubo, M. Okamura, S. W. O'Neale29, Y. Oohata19, K. Paech15, J Perl6, Andreas Pfeiffer4, Maria Grazia Pia, F. Ranjard4, A.M. Rybin, S.S Sadilov4, E. Di Salvo8, Giovanni Santin27, Takashi Sasaki3, N. Savvas2, Y. Sawada, Stefan Scherer15, S. Sei24, V. Sirotenko4, David J. Smith6, N. Starkov, H. Stoecker15, J. Sulkimo20, M. Takahata23, Satoshi Tanaka30, E. Tcherniaev4, E. Safai Tehrani6, M. Tropeano1, P. Truscott31, H. Uno24, L. Urbán, P. Urban32, M. Verderi, A. Walkden2, W. Wander33, H. Weber15, J.P. Wellisch4, Torre Wenaus34, D.C. Williams, Douglas Wright6, T. Yamada24, H. Yoshida24, D. Zschiesche15 
TL;DR: The Gelfant 4 toolkit as discussed by the authors is a toolkit for simulating the passage of particles through matter, including a complete range of functionality including tracking, geometry, physics models and hits.
Abstract: G eant 4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

18,904 citations

Journal ArticleDOI
K. Adcox1, S. S. Adler2, Serguei Afanasiev3, Christine Angela Aidala4  +550 moreInstitutions (48)
TL;DR: In this paper, the results of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) were examined with an emphasis on implications for the formation of a new state of dense matter.

2,572 citations

Journal ArticleDOI
TL;DR: In this article, the main results obtained by the BRAHMS Collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC are reviewed.

1,860 citations

Journal ArticleDOI
TL;DR: In the most central Au+Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate as discussed by the authors.

1,786 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott1, Jalal Abdallah1, A. A. Abdelalim1  +2582 moreInstitutions (23)
TL;DR: The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid, including supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors.
Abstract: The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

1,514 citations

Related Papers (5)