scispace - formally typeset
Journal ArticleDOI

Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region

Reads0
Chats0
TLDR
In this paper, the authors used the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) pre-flight model satellite spectrometers to measure the gas-phase absorption spectra of the most important atmospheric trace gases (O3, NO2, SO2, O2, H2O, CO, CO2, CH4, and N2O) in the 230-2380 nm range at medium spectral resolution and at several temperatures between 203 and 293
Abstract
Using the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) pre-flight model satellite spectrometer, gas-phase absorption spectra of the most important atmospheric trace gases (O3, NO2, SO2, O2, OClO, H2CO, H2O, CO, CO2, CH4, and N2O) have been measured in the 230–2380 nm range at medium spectral resolution and at several temperatures between 203 and 293 K. The spectra show high signal-to-noise ratio (between 200 up to a few thousands), high baseline stability (better than 10−2) and an accurate wavelength calibration (better than 0.01 nm) and were scaled to absolute absorption cross-sections using previously published data. The results are important as reference data for atmospheric remote-sensing and physical chemistry. Amongst other results, the first measurements of the Wulf bands of O3 up to their origin above 1000 nm were made at five different temperatures between 203 and 293 K, the first UV-Vis absorption cross-sections of NO2 in gas-phase equilibrium at 203 K were recorded, and the ultraviolet absorption cross-sections of SO2 were measured at five different temperatures between 203 and 296 K. In addition, the molecular absorption spectra were used to improve the wavelength calibration of the SCIAMACHY spectrometer and to characterize the instrumental line shape (ILS) and straylight properties of the instrument. It is demonstrated that laboratory measurements of molecular trace gas absorption spectra prior to launch are important for satellite instrument characterization and to validate and improve the spectroscopic database.

read more

Citations
More filters
Journal ArticleDOI

The HITRAN 2008 molecular spectroscopic database

TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Journal ArticleDOI

Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2

TL;DR: Direct photoionization mass spectrometric detection of formaldehyde oxide (CH2OO) as a product of the reaction ofCH2I with O2 enabled direct laboratory determinations of CH2OO kinetics, suggesting a substantially greater role of carbonyl oxides in models of tropospheric sulfate and nitrate chemistry than previously assumed.
Journal ArticleDOI

The libRadtran software package for radiative transfer calculations (version 2.0.1)

TL;DR: The libRadtran as discussed by the authors software package is a widely used software package for radiative transfer calculations, which allows one to compute (polarized) radiances, irradiance, and actinic fluxes in the solar and thermal spectral regions.
Journal ArticleDOI

Satellite remote sensing of surface air quality

TL;DR: In this paper, the authors reviewed the capabilities of satellite remote sensing of these species in the boundary layer, along with physical processes affecting their accuracy and precision, and discussed applications of satellite observations for case studies of specific events, for estimates of surface concentrations, and to improve emission inventories of trace gases and aerosols.
Journal ArticleDOI

The HITRAN2020 molecular spectroscopic database

TL;DR: The HITRAN database is a compilation of molecular spectroscopic parameters as discussed by the authors , which is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres).
References
More filters
Journal ArticleDOI

SCIAMACHY: Mission Objectives and Measurement Modes

TL;DR: SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth's atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240-2380 nm) at moderate spectral resolution (0.2-1.5 nm, λ/Δλ ≈ 1000-10
Journal ArticleDOI

Long Optical Paths of Large Aperture

TL;DR: In this article, an absorption cell is described, in which the light traverses a small volume a large and arbitrarily variable number of times, and the angular aperture of the mirrors is not occulted either on or off the optical axis, and can be used for observing spectra that are very weak, or that belong to high boiling point compounds or to compounds obtainable only in very low concentrations.
Journal ArticleDOI

Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K

TL;DR: In this article, the authors measured the NO2 absorption cross-section from 42 000 to 10 000 cm−1 (238-1000 nm) with a Fourier transform spectrometer (at the resolution of 2 cm− 1, 0.01 nm at 240 nm to 0.2 nm at 1000 nm).
Journal ArticleDOI

Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

TL;DR: In this article, the absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed.
Related Papers (5)