scispace - formally typeset
Search or ask a question
Book

Measuring Biological Diversity

01 Jan 2004-
TL;DR: In this paper, the authors focus on the pressure humanity is placing on the natural world, and on the continued ability of ecosystems to deliver the services on which we all depend, and develop strategies to ameliorate its impact.
Abstract: Summary As prehistoric cave paintings illustrate, our species has had an enduring appreciation of the variety and abundance of life on Earth. Today, however, concern is focused on the pressure humanity is placing on the natural world, and on the continued ability of ecosystems to deliver the services on which we all depend. To understand the extent of this ‘biodiversity crisis’ and develop strategies to ameliorate its impact, it is essential to be able to accurately measure biological diversity (a term often contracted to biodiversity) and make informed predictions about how and why this diversity varies over space and time.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
Abstract: We introduce here a new method for computing differences between microbial communities based on phylogenetic information. This method, UniFrac, measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both. UniFrac can be used to determine whether communities are significantly different, to compare many communities simultaneously using clustering and ordination techniques, and to measure the relative contributions of different factors, such as chemistry and geography, to similarities between samples. We demonstrate the utility of UniFrac by applying it to published 16S rRNA gene libraries from cultured isolates and environmental clones of bacteria in marine sediment, water, and ice. Our results reveal that (i) cultured isolates from ice, water, and sediment resemble each other and environmental clone sequences from sea ice, but not environmental clone sequences from sediment and water; (ii) the geographical location does not correlate strongly with bacterial community differences in ice and sediment from the Arctic and Antarctic; and (iii) bacterial communities differ between terrestrially impacted seawater (whether polar or temperate) and warm oligotrophic seawater, whereas those in individual seawater samples are not more similar to each other than to those in sediment or ice samples. These results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.

6,679 citations

Journal ArticleDOI
21 Jul 2006-Science
TL;DR: Evidence of declines (pre-versus post-1980) in local bee diversity in Britain and the Netherlands is found and a causal connection between local extinctions of functionally linked plant and pollinator species is strongly suggested.
Abstract: Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.

2,616 citations

Journal ArticleDOI
02 Apr 2015-Nature
TL;DR: A terrestrial assemblage database of unprecedented geographic and taxonomic coverage is analysed to quantify local biodiversity responses to land use and related changes and shows that in the worst-affected habitats, pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%.
Abstract: Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

2,532 citations

Journal ArticleDOI
TL;DR: In this article, the authors extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number qD, q. 0) and presented a unified approach for both individual-based (abundance) data and sample-based data.
Abstract: Quantifying and assessing changes in biological diversity are central aspects of many ecological studies, yet accurate methods of estimating biological diversity from sampling data have been elusive. Hill numbers, or the effective number of species, are increasingly used to characterize the taxonomic, phylogenetic, or functional diversity of an assemblage. However, empirical estimates of Hill numbers, including species richness, tend to be an increasing function of sampling effort and, thus, tend to increase with sample completeness. Integrated curves based on sampling theory that smoothly link rarefaction (interpolation) and prediction (extrapolation) standardize samples on the basis of sample size or sample completeness and facilitate the comparison of biodiversity data. Here we extended previous rarefaction and extrapolation models for species richness (Hill number q D, where q ¼ 0) to measures of taxon diversity incorporating relative abundance (i.e., for any Hill number q D, q . 0) and present a unified approach for both individual-based (abundance) data and sample- based (incidence) data. Using this unified sampling framework, we derive both theoretical formulas and analytic estimators for seamless rarefaction and extrapolation based on Hill numbers. Detailed examples are provided for the first three Hill numbers: q ¼ 0 (species richness), q ¼ 1 (the exponential of Shannon's entropy index), and q ¼ 2 (the inverse of Simpson's concentration index). We developed a bootstrap method for constructing confidence intervals around Hill numbers, facilitating the comparison of multiple assemblages of both rarefied and extrapolated samples. The proposed estimators are accurate for both rarefaction and short-range extrapolation. For long-range extrapolation, the performance of the estimators depends on both the value of q and on the extrapolation range. We tested our methods on simulated data generated from species abundance models and on data from large species inventories. We also illustrate the formulas and estimators using empirical data sets from biodiversity surveys of temperate forest spiders and tropical ants.

2,182 citations

Journal ArticleDOI
TL;DR: For kelp holdfast assemblages from New Zealand, variation in species composition was greater in smaller holdfasts, while variation in relative abundances was great in larger holdasts, regardless of the measure used.
Abstract: Beta diversity can be defined as the variability in species composition among sampling units for a given area. We propose that it can be measured as the average dissimilarity from individual observation units to their group centroid in multivariate space, using an appropriate dissimilarity measure. Differences in beta diversity among different areas or groups of samples can be tested using this approach. The choice of transformation and dissimilarity measure has important consequences for interpreting results. For kelp holdfast assemblages from New Zealand, variation in species composition was greater in smaller holdfasts, while variation in relative abundances was greater in larger holdasts. Variation in community structure of Norwegian continental shelf macrobenthic fauna increased with increases in environmental heterogeneity, regardless of the measure used. We propose a new dissimilarity measure which allows the relative weight placed on changes in composition vs. abundance to be specified explicitly.

1,972 citations