scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measuring orientation of human body segments using miniature gyroscopes and accelerometers

01 Mar 2005-Medical & Biological Engineering & Computing (Springer)-Vol. 43, Iss: 2, pp 273-282
TL;DR: A method for accurate measurement of the orientation of human body segments using an inertial measurement unit (IMU) using a Kalman filter and it was shown that the gyroscope offset could be estimated continuously during a trial.
Abstract: In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate measurement of the orientation of human body segments using an inertial measurement unit (IMU). An IMU containing three single-axis accelerometers and three single-axis micromachined gyroscopes was assembled in a rectangular box, sized 20×20×30 mm. The presented orientation estimation algorithm continuously corrected orientation estimates obtained by mathematical integration of the 3D angular velocity measured using the gyroscopes. The correction was performed using an inclination estimate continuously obtained using the signal of the 3D accelerometer. This reduces the integration drift that originates from errors in the angular velocity signal. In addition, the gyroscope offset was continuously recalibrated. The method was realised using a Kalman filter that took into account the spectra of the signals involved as well as a fluctuating gyroscope offset. The method was tested for movements of the pelvis, trunk and forearm. Although the problem of integration drift around the global vertical continuously increased in the order of 0.5°s −1, the inclination estimate was accurate within 3° RMS. It was shown that the gyroscope offset could be estimated continuously during a trial. Using an initial offset error of 1 rads −1, after 2 min the offset error was roughly 5% of the original offset error. Using the Kalman filter described, an accurate and robust system for ambulatory motion recording can be realised.
Citations
More filters
Proceedings ArticleDOI
12 Aug 2011
TL;DR: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications, applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity sensor arrays that also include tri- axis magnetometers.
Abstract: This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time.

1,803 citations


Cites background from "Measuring orientation of human body..."

  • ...For example, For example, AB q̂ describes the orientation of frame B relative to frame A and Av̂ is a vector described in frame A....

    [...]

Journal ArticleDOI
16 Apr 2014-Sensors
TL;DR: A set of new methods for joint angle calculation based on inertial measurement data in the context of human motion analysis are presented, including methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field.
Abstract: This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

632 citations


Cites methods from "Measuring orientation of human body..."

  • ...The drift in the inclination part of the IMU’s orientation is eliminated using the assumption that the measured acceleration is dominated by gravitational acceleration [4]....

    [...]

Journal ArticleDOI
TL;DR: The use of accelerometers attached to the upper body has provided useful insights into the motor control of normal walking, age-related differences in dynamic postural control, and gait patterns in people with movement disorders.

596 citations


Cites background from "Measuring orientation of human body..."

  • ...However, concurrent data collection with rate gyroscopes can provide added detail on the orientation of the accelerometer [14–19], and thus enhances the possibility of correcting for the effects of gravity....

    [...]

Journal ArticleDOI
TL;DR: This article reviews the different techniques which have been used to classify normal activities and/or identify falls from body-worn sensor data and illustrates the variety of approaches which have previously been applied.
Abstract: With the advent of miniaturized sensing technology, which can be body-worn, it is now possible to collect and store data on different aspects of human movement under the conditions of free living. This technology has the potential to be used in automated activity profiling systems which produce a continuous record of activity patterns over extended periods of time. Such activity profiling systems are dependent on classification algorithms which can effectively interpret body-worn sensor data and identify different activities. This article reviews the different techniques which have been used to classify normal activities and/or identify falls from body-worn sensor data. The review is structured according to the different analytical techniques and illustrates the variety of approaches which have previously been applied in this field. Although significant progress has been made in this important area, there is still significant scope for further work, particularly in the application of advanced classification techniques to problems involving many different activities.

588 citations

Journal ArticleDOI
12 Sep 2005
TL;DR: A complementary Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer, and magnetometer signals from miniature sensors shows accurate and drift-free orientation estimates.
Abstract: This paper describes a complementary Kalman filter design to estimate orientation of human body segments by fusing gyroscope, accelerometer, and magnetometer signals from miniature sensors. Ferromagnetic materials or other magnetic fields near the sensor module disturb the local earth magnetic field and, therefore, the orientation estimation, which impedes many (ambulatory) applications. In the filter, the gyroscope bias error, orientation error, and magnetic disturbance error are estimated. The filter was tested under quasi-static and dynamic conditions with ferromagnetic materials close to the sensor module. The quasi-static experiments implied static positions and rotations around the three axes. In the dynamic experiments, three-dimensional rotations were performed near a metal tool case. The orientation estimated by the filter was compared with the orientation obtained with an optical reference system Vicon. Results show accurate and drift-free orientation estimates. The compensation results in a significant difference (p<0.01) between the orientation estimates with compensation of magnetic disturbances in comparison to no compensation or only gyroscopes. The average static error was 1.4/spl deg/ (standard deviation 0.4) in the magnetically disturbed experiments. The dynamic error was 2.6/spl deg/ root means square.

551 citations

References
More filters
Book ChapterDOI
01 Jan 2001
TL;DR: In this paper, the clssical filleting and prediclion problem is re-examined using the Bode-Shannon representation of random processes and the?stat-tran-sition? method of analysis of dynamic systems.
Abstract: The clssical filleting and prediclion problem is re-examined using the Bode-Shannon representation of random processes and the ?stat-tran-sition? method of analysis of dynamic systems. New result are: (1) The formulation and Methods of solution of the problm apply, without modification to stationary and nonstationary stalistics end to growing-memory and infinile -memory filters. (2) A nonlinear difference (or differential) equalion is dericed for the covariance matrix of the optimal estimalion error. From the solution of this equation the coefficients of the difference, (or differential) equation of the optimal linear filter are obtained without further caleulations. (3) Tke fillering problem is shoum to be the dual of the nois-free regulator problem. The new method developed here, is applied to do well-known problems, confirming and extending, earlier results. The discussion is largely, self-contatained, and proceeds from first principles; basic concepts of the theory of random processes are reviewed in the Appendix.

15,391 citations

Book
01 Jan 1992
TL;DR: In this paper, the Discrete Kalman Filter (DFL) is used for smoothing and prediction linearization in the Global Positioning System (GPS) and a case study is presented.
Abstract: Probability and Random Variables Mathematical Description of Random Signals Response of Linear Systems to Random Inputs Wiener Filtering The Discrete Kalman Filter Applications and Additional Topics on Discrete Kalman Filtering The Continuous Kalman Filter Discrete Smoothing and Prediction Linearization and Additional Topics on Applied Kalman Filtering The Global Positioning System: A Case Study.

2,777 citations

Journal ArticleDOI
TL;DR: Preliminary evaluation of the system in 13 male subjects during standardized activities in the laboratory demonstrated a significant relationship between accelerometer output and energy expenditure due to physical activity, the standard reference for physical activity.
Abstract: The present study describes the development of a triaxial accelerometer (TA) and a portable data processing unit for the assessment of daily physical activity. The TA is composed of three orthogonally mounted uniaxial piezoresistive accelerometers and can be used to register accelerations covering the amplitude and frequency ranges of human body acceleration. Interinstrument and test-retest experiments showed that the offset and the sensitivity of the TA were equal for each measurement direction and remained constant on two measurement days. Transverse sensitivity was significantly different for each measurement direction, but did not influence accelerometer output (<3% of the sensitivity along the main axis). The data unit enables the on-line processing of accelerometer output to a reliable estimator of physical activity over eight-day periods. Preliminary evaluation of the system in 13 male subjects during standardized activities in the laboratory demonstrated a significant relationship between accelerometer output and energy expenditure due to physical activity, the standard reference for physical activity (r=0.89). Shortcomings of the system are its low sensitivity to sedentary activities and the inability to register static exercise. The validity of the system for the assessment of normal daily physical activity and specific activities outside the laboratory should be studied in free-living subjects.

951 citations

Journal ArticleDOI
01 Jun 1995
TL;DR: A low-cost solid-state inertial navigation system for mobile robotics applications is described and error models for the inertial sensors are generated and included in an extended Kalman filter for estimating the position and orientation of a moving robot vehicle.
Abstract: A low-cost solid-state inertial navigation system (INS) for mobile robotics applications is described. Error models for the inertial sensors are generated and included in an extended Kalman filter (EKF) for estimating the position and orientation of a moving robot vehicle. Two different solid-state gyroscopes have been evaluated for estimating the orientation of the robot. Performance of the gyroscopes with error models is compared to the performance when the error models are excluded from the system. Similar error models have been developed for each axis of a solid-state triaxial accelerometer and for a conducting-bubble tilt sensor which may also be used as a low-cost accelerometer. An integrated inertial platform consisting of three gyroscopes, a triaxial accelerometer and two tilt sensors is described. >

734 citations


"Measuring orientation of human body..." refers background in this paper

  • ...This has already been performed in the automotive field (BARSHAN and DURRANT-WHYTE, 1995) and for the assessment of human balancing (BASELLI et al., 2001)....

    [...]