scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measuring sleep: accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography.

TL;DR: It is concluded that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with some limitations in specificity.
Abstract: OBJECTIVES We validated actigraphy for detecting sleep and wakefulness versus polysomnography (PSG). DESIGN Actigraphy and polysomnography were simultaneously collected during sleep laboratory admissions. All studies involved 8.5 h time in bed, except for sleep restriction studies. Epochs (30-sec; n = 232,849) were characterized for sensitivity (actigraphy = sleep when PSG = sleep), specificity (actigraphy = wake when PSG = wake), and accuracy (total proportion correct); the amount of wakefulness after sleep onset (WASO) was also assessed. A generalized estimating equation (GEE) model included age, gender, insomnia diagnosis, and daytime/nighttime sleep timing factors. SETTING Controlled sleep laboratory conditions. PARTICIPANTS Young and older adults, healthy or chronic primary insomniac (PI) patients, and daytime sleep of 23 night-workers (n = 77, age 35.0 ± 12.5, 30F, mean nights = 3.2). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Overall, sensitivity (0.965) and accuracy (0.863) were high, whereas specificity (0.329) was low; each was only slightly modified by gender, insomnia, day/night sleep timing (magnitude of change 30 min/night. CONCLUSIONS This validation quantifies strengths and weaknesses of actigraphy as a tool measuring sleep in clinical and population studies. Overall, the participant-specific accuracy is relatively high, and for most participants, above 80%. We validate this finding across multiple nights and a variety of adults across much of the young to midlife years, in both men and women, in those with and without insomnia, and in 77 participants. We conclude that actigraphy is overall a useful and valid means for estimating total sleep time and wakefulness after sleep onset in field and workplace studies, with some limitations in specificity.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The data support the hypothesis that access to electricity delays sleep timing, and the higher sleep quality in the urban population also suggests that some aspects of industrialisation are beneficial to sleep.
Abstract: The well-established negative health outcomes of sleep deprivation, and the suggestion that availability of electricity may enable later bed times without compensating sleep extension in the morning, have stimulated interest in studying communities whose sleep pattern may resemble a pre-industrial state. Here, we describe sleep and activity in two neighbouring communities, one urban (Milange) and one rural (Tengua), in a region of Mozambique where urbanisation is an ongoing process. The two communities differ in the amount and timing of daily activity and of light exposure, with later bedtimes (≈1 h) associated with more evening and less daytime light exposure seen in the town of Milange. In contrast to previous reports comparing communities with and without electricity, sleep duration did not differ between Milange (7.28 h) and Tengua (7.23 h). Notably, calculated sleep quality was significantly poorer in rural Tengua than in Milange, and poor sleep quality was associated with a number of attributes more characteristic of rural areas, including more intense physical labour and less comfortable sleeping arrangements. Thus, whilst our data support the hypothesis that access to electricity delays sleep timing, the higher sleep quality in the urban population also suggests that some aspects of industrialisation are beneficial to sleep.

463 citations

Journal ArticleDOI
TL;DR: The sleep–wake cycle appears to regulate levels of the pathogenic amyloid-beta peptide in the brain, and manipulating sleep can influence AD-related pathology in mouse models via multiple mechanisms.
Abstract: Disturbances in the sleep-wake cycle and circadian rhythms are common symptoms of Alzheimer Disease (AD), and they have generally been considered as late consequences of the neurodegenerative processes. Recent evidence demonstrates that sleep-wake and circadian disruption often occur early in the course of the disease and may even precede the development of cognitive symptoms. Furthermore, the sleep-wake cycle appears to regulate levels of the pathogenic amyloid-beta peptide in the brain, and manipulating sleep can influence AD-related pathology in mouse models via multiple mechanisms. Finally, the circadian clock system, which controls the sleep-wake cycle and other diurnal oscillations in mice and humans, may also have a role in the neurodegenerative process. In this review, we examine the current literature related to the mechanisms by which sleep and circadian rhythms might impact AD pathogenesis, and we discuss potential therapeutic strategies targeting these systems for the prevention of AD.

370 citations

Journal ArticleDOI
TL;DR: Examination of sleep quality for 78 community dwelling adults 55+ indicates for older adults the PSQI should not be used as a substitute for actigraphy, or vice versa and best practice is to include both subjective and objective measures when examining sleep quality in older adults.
Abstract: Sleep quality decreases with aging and thus sleep complaints are prevalent in older adults, particularly for those with cognitive impairment and dementia. For older adults, emerging evidence suggests poor sleep quality increases risk of developing cognitive impairment and dementia. Given the aging population-and the impending economic burden associated with increasing numbers of dementia patients-there is pressing need to improve sleep quality among older adults. As such, research efforts have increased focus on investigating the association between age-related sleep changes and cognitive decline in older adults. Sleep quality is a complex construct to evaluate empirically, and yet the Pittsburg Sleep Quality Index (PSQI) is commonly used in studies as their only measure of sleep quality. Furthermore, the PSQI may not be the best sleep quality measure for older adults, due to its reliance on the cognitive capacity to reflect on the past month. Further study is needed to determine the PSQI's validity among older adults. Thus, the current study examined sleep quality for 78 community dwelling adults 55+ to determine the PSQI's predictive validity for objective sleep quality (as measured by actigraphy). We compared two subjective measures of sleep quality-the PSQI and Consensus Sleep Diary (CSD)-with actigraphy (MotionWatch 8©; camntech). Our results suggest perceived sleep quality is quite different from objective reality, at least for adults 55+. Importantly, we show this difference is unrelated to age, gender, education, or cognitive status (assessed using standard screens). Previous studies have shown the PSQI to be a valuable tool for assessing subjective sleep quality; however, our findings indicate for older adults the PSQI should not be used as a substitute for actigraphy, or vice versa. Hence, we conclude best practice is to include both subjective and objective measures when examining sleep quality in older adults (i.e., the PSQI, CSD, and actigraphy).

321 citations


Cites methods from "Measuring sleep: accuracy, sensitiv..."

  • ...Wrist-worn actigraphy measuring sleep parameters has since been validated by comparison with PSG (Kushida et al., 2001; de Souza et al., 2003; Kanady et al., 2011; Marino et al., 2013; Kosmadopoulos et al., 2014)....

    [...]

Journal ArticleDOI
01 Sep 2015-Sleep
TL;DR: Shorter sleep duration, measured behaviorally using actigraphy prior to viral exposure, was associated with increased susceptibility to the common cold.
Abstract: Study objectives Short sleep duration and poor sleep continuity have been implicated in the susceptibility to infectious illness. However, prior research has relied on subjective measures of sleep, which are subject to recall bias. The aim of this study was to determine whether sleep, measured behaviorally using wrist actigraphy, predicted cold incidence following experimental viral exposure. Design, measurements, and results A total of 164 healthy men and women (age range, 18 to 55 y) volunteered for this study. Wrist actigraphy and sleep diaries assessed sleep duration and sleep continuity over 7 consecutive days. Participants were then quarantined and administered nasal drops containing the rhinovirus, and monitored over 5 days for the development of a clinical cold (defined by infection in the presence of objective signs of illness). Logistic regression analysis revealed that actigraphy- assessed shorter sleep duration was associated with an increased likelihood of development of a clinical cold. Specifically, those sleeping 7 h per night; those sleeping 6.01 to 7 h were at no greater risk (OR = 1.66; 95% CI 0.40-6.95). This association was independent of prechallenge antibody levels, demographics, season of the year, body mass index, psychological variables, and health practices. Sleep fragmentation was unrelated to cold susceptibility. Other sleep variables obtained using diary and actigraphy were not strong predictors of cold susceptibility. Conclusions Shorter sleep duration, measured behaviorally using actigraphy prior to viral exposure, was associated with increased susceptibility to the common cold.

257 citations

Journal ArticleDOI
TL;DR: The sleep period consistently occurred during the nighttime period of falling environmental temperature, was not interrupted by extended periods of waking, and terminated, with vasoconstriction, near the nadir of daily ambient temperature.

248 citations

References
More filters
Journal ArticleDOI
TL;DR: The 95% limits of agreement, estimated by mean difference 1.96 standard deviation of the differences, provide an interval within which 95% of differences between measurements by the two methods are expected to lie.
Abstract: Agreement between two methods of clinical measurement can be quantified using the differences between observations made using the two methods on the same subjects. The 95% limits of agreement, estimated by mean difference +/- 1.96 standard deviation of the differences, provide an interval within which 95% of differences between measurements by the two methods are expected to lie. We describe how graphical methods can be used to investigate the assumptions of the method and we also give confidence intervals. We extend the basic approach to data where there is a relationship between difference and magnitude, both with a simple logarithmic transformation approach and a new, more general, regression approach. We discuss the importance of the repeatability of each method separately and compare an estimate of this to the limits of agreement. We extend the limits of agreement approach to data with repeated measurements, proposing new estimates for equal numbers of replicates by each method on each subject, for unequal numbers of replicates, and for replicated data collected in pairs, where the underlying value of the quantity being measured is changing. Finally, we describe a nonparametric approach to comparing methods.

7,976 citations

Journal ArticleDOI
01 May 2003-Sleep
TL;DR: It is suggested that in the clinical setting, actigraphy is reliable for evaluating sleep patterns in patients with insomnia, for studying the effect of treatments designed to improve sleep, in the diagnosis of circadian rhythm disorders (including shift work), and in evaluating sleep in individuals who are less likely to tolerate PSG, such as infants and demented elderly.
Abstract: In summary, although actigraphy is not as accurate as PSG for determining some sleep measurements, studies are in general agreement that actigraphy, with its ability to record continuously for long time periods, is more reliable than sleep logs which rely on the patients' recall of how many times they woke up or how long they slept during the night and is more reliable than observations which only capture short time periods Actigraphy can provide information obtainable in no other practical way It can also have a role in the medical care of patients with sleep disorders However, it should not be held to the same expectations as polysomnography Actigraphy is one-dimensional, whereas polysomnography comprises at least 3 distinct types of data (EEG, EOG, EMG), which jointly determine whether a person is asleep or awake It is therefore doubtful whether actigraphic data will ever be informationally equivalent to the PSG, although progress on hardware and data processing software is continuously being made Although the 1995 practice parameters paper determined that actigraphy was not appropriate for the diagnosis of sleep disorders, more recent studies suggest that for some disorders, actigraphy may be more practical than PSG While actigraphy is still not appropriate for the diagnosis of sleep disordered breathing or of periodic limb movements in sleep, it is highly appropriate for examining the sleep variability (ie, night-to-night variability) in patients with insomnia Actigraphy is also appropriate for the assessment of and stability of treatment effects of anything from hypnotic drugs to light treatment to CPAP, particularly if assessments are done before and after the start of treatment A recent independent review of the actigraphy literature by Sadeh and Acebo reached many of these same conclusions Some of the research studies failed to find relationships between sleep measures and health-related symptoms The interpretation of these data is also not clear-cut Is it that the actigraph is not reliable enough to the access the relationship between sleep changes and quality of life measures, or, is it that, in fact, there is no relationship between sleep in that population and quality of life measures? Other studies of sleep disordered breathing, where actigraphy was not used and was not an outcome measure also failed to find any relationship with quality of life Is it then the actigraph that is not reliable or that the associations just do not exist? The one area where actigraphy can be used for clinical diagnosis is in the evaluation of circadian rhythm disorders Actigraphy has been shown to be very good for identifying rhythms Results of actigraphic recordings correlate well with measurements of melatonin and of core body temperature rhythms Activity records also show sleep disturbance when sleep is attempted at an unfavorable phase of the circadian cycle Actigraphy therefore would be particularly good for aiding in the diagnosis of delayed or advanced sleep phase syndrome, non-24-hour-sleep syndrome and in the evaluation of sleep disturbances in shift workers It must be remembered, however, that overt rest-activity rhythms are susceptible to various masking effects, so they may not always show the underlying rhythm of the endogenous circadian pacemaker In conclusion, the latest set of research articles suggest that in the clinical setting, actigraphy is reliable for evaluating sleep patterns in patients with insomnia, for studying the effect of treatments designed to improve sleep, in the diagnosis of circadian rhythm disorders (including shift work), and in evaluating sleep in individuals who are less likely to tolerate PSG, such as infants and demented elderly While actigraphy has been used in research studies for many years, up to now, methodological issues had not been systematically addressed in clinical research and practice Those issues have now been addressed and actigraphy may now be reaching the maturity needed for application in the clinical arena

2,321 citations

01 Jan 2003
TL;DR: Wang et al. as discussed by the authors reviewed the current knowledge about the role of actigraphy in the evaluation of sleep disorders and concluded that actigraphys can provide useful information and that it may be a cost-effective method for assessing specific sleep disorders.
Abstract: 1.0 BACKGROUND ACTIGRAPHY HAS BEEN USED TO STUDY SLEEP/WAKE PATTERNS FOR OVER 20 YEARS. The advantage of actigraphy over traditional polysomnography (PSG) is that actigraphy can conveniently record continuously for 24-hours a day for days, weeks or even longer. In 1995, Sadeh et al.,1 under the auspices of the American Sleep Disorders Association (now called the American Academy of Sleep Medicine, AASM), reviewed the current knowledge about the role of actigraphy in the evaluation of sleep disorders. They concluded that actigraphy does provide useful information and that it may be a “cost-effective method for assessing specific sleep disorders...[but that] methodological issues have not been systematically addressed in clinical research and practice.” Based on that task force’s report, the AASM Standards of Practice Committee concluded that actigraphy was not indicated for routine diagnosis or for assessment of severity or management of sleep disorders, but might be a useful adjunct for diagnosing insomnia, circadian rhythm disorders or excessive sleepiness.2 Since that time, actigraph technology has improved, and many more studies have been conducted. Several review papers have concluded that wrist actigraphy can usefully approximate sleep versus wake state during 24 hours and have noted that actigraphy has been used for monitoring insomnia, circadian sleep/wake disturbances, and periodic limb movement disorder.3,4 This paper begins where the 1995 paper left off. Under the auspices of the AASM, a new task force was established to review the current state of the art of this technology.

1,918 citations

Journal ArticleDOI
01 Sep 1992-Sleep
TL;DR: In this paper, the authors developed and validated automatic scoring methods to distinguish sleep from wakefulness based on wrist activity using wrist actigraphs during overnight polysomnography, which provided valuable information about sleep and wakefulness that could be useful in both clinical and research applications.
Abstract: The purpose of this study was to develop and validate automatic scoring methods to distinguish sleep from wakefulness based on wrist activity. Forty-one subjects (18 normals and 23 with sleep or psychiatric disorders) wore a wrist actigraph during overnight polysomnography. In a randomly selected subsample of 20 subjects, candidate sleep/wake prediction algorithms were iteratively optimized against standard sleep/wake scores. The optimal algorithms obtained for various data collection epoch lengths were then prospectively tested on the remaining 21 subjects. The final algorithms correctly distinguished sleep from wakefulness approximately 88% of the time. Actigraphic sleep percentage and sleep latency estimates correlated 0.82 and 0.90, respectively, with corresponding parameters scored from the polysomnogram (p < 0.0001). Automatic scoring of wrist activity provides valuable information about sleep and wakefulness that could be useful in both clinical and research applications.

1,556 citations