scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Measuring the higher order sinusoidal input describing functions of a non-linear plant operating in feedback

01 Jan 2008-Control Engineering Practice (Elsevier)-Vol. 16, Iss: 1, pp 101-113
TL;DR: In this article, two measuring techniques are presented for measuring the higher order sinusoidal input describing functions (HOSIDF) of a non-linear plant operating in feedback.
About: This article is published in Control Engineering Practice.The article was published on 2008-01-01 and is currently open access. It has received 26 citations till now. The article focuses on the topics: Harmonic & Harmonics.
Citations
More filters
Journal Article
TL;DR: In this paper, a modification of the integrated friction model structure proposed by Swevers et al. called the Leuven model is presented, which allows accurate modeling both in the presliding and the sliding regimes without the use of a switching function.
Abstract: This note presents a modification of the integrated friction model structure proposed by Swevers et al. (2000), called the Leuven model. The Leuven model structure allows accurate modeling both in the presliding and the sliding regimes without the use of a switching function. The model incorporates a hysteresis function with nonlocal memory and arbitrary transition curves. This note presents two modifications of the Leuven model. A first modification overcomes a recently detected shortcoming of the original Leuven model: a discontinuity in the friction force which occurs during certain transitions in presliding. A second modification, using the general Maxwell slip model to implement the hysteresis force, eliminates the problem of stack overflow, which can occur with the implementation of the hysteresis force.

288 citations

Journal ArticleDOI
TL;DR: In this paper, a linear dynamic time-invariant model is identified to describe the relationship between the reference signal and the output of the system, and the power spectrum of the unmodeled disturbances are identified to generate uncertainty bounds on the estimated model.
Abstract: Linear system identification [1]?[4] is a basic step in modern control design approaches. Starting from experimental data, a linear dynamic time-invariant model is identified to describe the relationship between the reference signal and the output of the system. At the same time, the power spectrum of the unmodeled disturbances is identified to generate uncertainty bounds on the estimated model.

83 citations

Journal ArticleDOI
TL;DR: A linear dynamic time-invariant model is identified to describe the relationship between the reference signal and the output of the system and the power spectrum of the unmodeled disturbances are identified to generate uncertainty bounds on the estimated model.
Abstract: This article addresses the following problems: 1) First, a nonlinearity analysis is made looking for the presence of nonlinearities in an early phase of the identification process. The level and the nature of the nonlinearities should be retrieved without a significant increase in the amount of measured data. 2) Next it is studied if it is safe to use a linear system identification approach, even if the presence of nonlinear distortions is detected. The properties of the linear system identification approach under these conditions are studied, and the reliability of the uncertainty bounds is checked. 3) Eventually, tools are provided to check how much can be gained if a nonlinear model were identified instead of a linear model. Addressing these three questions forms the outline of this article. The possibilities and pitfalls of using a linear identification framework in the presence of nonlinear distortions will be discussed and illustrated on lab-scale and industrial examples. In this article, the focus is on nonparametric and parametric black box identification methods, however the results might also be useful for physical modeling methods. Knowing the actual nonlinear distortion level can help to choose the required level of detail that is needed in the physical model. This will strongly influence the modeling effort. Also, in this case, significant time can be saved if it is known from experiments that the system behaves almost linearly. The converse is also true. If the experiments show that some (sub-)systems are highly nonlinear, it helps to focus the physical modeling effort on these critical elements.

61 citations

Journal ArticleDOI
TL;DR: In this paper, a frequency domain based method for controller design for nonlinear systems is presented, which is applied to optimally design a feed forward friction compensator for an industrial motion stage in a transmission electron microscope.

50 citations


Additional excerpts

  • ...Finally, the Higher Order Sinusoidal Input Describing Functions (HOSIDF) [16,18,26] are used to analyze nonlinear effects in the following....

    [...]

Journal ArticleDOI
TL;DR: A mapping from the parameters defining the nonlinear and LTI dynamics to the output spectrum is derived, which allows analytic description and analysis of the corresponding higher order sinusoidal input describing functions.

29 citations

References
More filters
Book
01 Jan 1991
TL;DR: Covers in a progressive fashion a number of analysis tools and design techniques directly applicable to nonlinear control problems in high performance systems (in aerospace, robotics and automotive areas).
Abstract: Covers in a progressive fashion a number of analysis tools and design techniques directly applicable to nonlinear control problems in high performance systems (in aerospace, robotics and automotive areas).

15,545 citations

Book
01 Jan 1996
TL;DR: This book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems and provides the reader with insights into the opportunities and limitations of feedback control.
Abstract: From the Publisher: This is a book on practical feedback control and not on system theory in general. Feedback is used in control systems to change the dynamics of the system and to reduce the sensitivity of the system to both signal and model uncertainty. The book presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. It provides the reader with insights into the opportunities and limitations of feedback control. Its objective is to enable the engineer to design real control systems. Important topics are: extensions and classical frequency-domain methods to multivariable systems, analysis of directions using the singular value decomposition, performance limitations and input-output controllability analysis, model uncertainty and robustness including the structured singular value, control structure design, and methods for controller synthesis and model reduction. Numerous worked examples, exercises and case studies, which make frequent use of MATLAB, are included. MATLAB files for examples and figures, solutions to selected exercises, extra problems and linear state-space models for the case studies are available on the Internet.

6,279 citations

Book
31 Dec 2003
TL;DR: Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach.
Abstract: Preface to the First Edition Preface to the Second Edition Acknowledgments List of Operators and Notational Conventions List of Symbols List of Abbreviations Chapter 1 An Introduction to Identification Chapter 2 Measurement of Frequency Response Functions Standard Solutions Chapter 3 Frequency Response Function Measurements in the Presence of Nonlinear Distortions Chapter 4 Detection, Quantification, and Qualification of Nonlinear Distortions in FRF Measurements Chapter 5 Design of Excitation Signals Chapter 6 Models of Linear Time-Invariant Systems Chapter 7 Measurement of Frequency Response Functions The Local Polynomial Approach Chapter 8 An Intuitive Introduction to Frequency Domain Identification Chapter 9 Estimation with Know Noise Model Chapter 10 Estimation with Unknown Noise Model Standard Solutions Chapter 11 Model Selection and Validation Chapter 12 Estimation with Unknown Noise Model The Local Polynomial Approach Chapter 13 Basic Choices in System Identification Chapter 14 Guidelines for the User Chapter 15 Some Linear Algebra Fundamentals Chapter 16 Some Probability and Stochastic Convergence Fundamentals Chapter 17 Properties of Least Squares Estimators with Deterministic Weighting Chapter 18 Properties of Least Squares Estimators with Stochastic Weighting Chapter 19 Identification of Semilinear Models Chapter 20 Identification of Invariants of (Over) Parameterized Models References Subject Index Author Index About the Authors

2,379 citations

Journal ArticleDOI
TL;DR: In this article, a digital feed-forward control algorithm for tracking desired time varying signals is presented, which is particularly suited to the general motion control problems including robotic arms and positioning tables.
Abstract: A digital feedforward control algorithm for tracking desired time varying signals is presented. The feedforward controller cancels all the closed-loop poles and cancellable closed-loop zeros. For uncancellable zeros, which include zeros outside the unit circle, the feedforward controller cancels the phase shift induced by them. The phase cancellation assures that the frequency response between the desired output and actual output exhibits zero phase shift for all the frequencies. The algorithm is particularly suited to the general motion control problems including robotic arms and positioning tables. A typical motion control problem is used to show the effectiveness of the proposed feedforward controller.

1,477 citations


"Measuring the higher order sinusoid..." refers methods in this paper

  • ...The learning filter L can be designed with the ZPETC algorithm [Tomizuka, 1987] and the resulting phase delay of l samples is absorbed in the two delay blocks....

    [...]

Journal ArticleDOI
TL;DR: In this article, a control scheme called repetitive control is proposed, in which the controlled variables follow periodic reference commands, and a high-accuracy asymptotic tracking property is achieved by implementing a model that generates the periodic signals of period L into the closed-loop system.
Abstract: A control scheme called repetitive control is proposed, in which the controlled variables follow periodic reference commands. A high-accuracy asymptotic tracking property is achieved by implementing a model that generates the periodic signals of period L into the closed-loop system. Sufficient conditions for the stability of repetitive control systems and modified repetitive control systems are derived by applying the small-gain theorem and the stability theorem for time-lag systems. Synthesis algorithms are presented by both the state-space approach and the factorization approach. In the former approach, the technique of the Kalman filter and perfect regulation is utilized, while coprime factorization over the matrix ring of proper stable rational functions and the solution of the Hankel norm approximation are used in the latter one. >

1,352 citations