scispace - formally typeset
Search or ask a question
Posted ContentDOI

Mechanical Regulation of Stem Cell Proliferation and Fate Decisions by their Differentiated Daughters

31 Aug 2020-bioRxiv (Cold Spring Harbor Laboratory)-
TL;DR: It is shown that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin and suggests that intra-tissue tension regulates stem cell proliferation, fate decisions and migration.
Abstract: Basal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that serve an essential role in generating the epidermal barrier. Here, we present data that differentiated progeny also regulate the proliferation, differentiation, and migration of basal progenitor cells. Using two distinct mouse lines, we found that increasing contractility of differentiated cells resulted in non-cell autonomous hyperproliferation of stem cells and prevented their commitment to a hair follicle lineage. These phenotypes were rescued by pharmacological inhibitors of contractility. Live-imaging revealed that increasing the contractility of differentiated cells resulted in stabilization of adherens junctions and impaired movement of basal progenitors during hair placode morphogenesis, as well as a defect in migration of melanoblasts. These data suggest that intra-tissue tension regulates stem cell proliferation, fate decisions and migration, similar to the known roles of extracellular matrix rigidity. Additionally, this work demonstrates that differentiated epidermal keratinocytes are a component of the stem cell niche that regulates development and homeostasis of the skin.
References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
18 Nov 2005-Science
TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Abstract: Normal tissue cells are generally not viable when suspended in a fluid and are therefore said to be anchorage dependent. Such cells must adhere to a solid, but a solid can be as rigid as glass or softer than a baby's skin. The behavior of some cells on soft materials is characteristic of important phenotypes; for example, cell growth on soft agar gels is used to identify cancer cells. However, an understanding of how tissue cells-including fibroblasts, myocytes, neurons, and other cell types-sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels (or to other cells) with which elasticity can be tuned to approximate that of tissues. Key roles in molecular pathways are played by adhesion complexes and the actinmyosin cytoskeleton, whose contractile forces are transmitted through transcellular structures. The feedback of local matrix stiffness on cell state likely has important implications for development, differentiation, disease, and regeneration.

5,889 citations

Journal ArticleDOI
15 Feb 2017-Methods
TL;DR: TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment and is validated for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.

2,356 citations

Journal ArticleDOI
19 Mar 2004-Cell
TL;DR: This review, which examines adult stem cell niches and their impact on stem cell biology, highlights the importance of understanding how stem cells interact with their microenvironment to establish and maintain their properties.

1,825 citations

Journal ArticleDOI
TL;DR: Non-muscle myosin II is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains.
Abstract: Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.

1,745 citations