scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mechanical stiffening, bistability, and bit operations in a microcantilever

11 Nov 2010-Applied Physics Letters (American Institute of Physics)-Vol. 97, Iss: 19, pp 193107
TL;DR: In this paper, the authors investigated the nonlinear dynamics of microcantilevers and showed that at strong driving, the cantilever amplitude is bistable and suggested several applications for the bistability of the canticle.
Abstract: We investigate the nonlinear dynamics of microcantilevers. We demonstrate mechanical stiffening of the frequency response at large amplitudes, originating from the geometric nonlinearity. At strong driving the cantilever amplitude is bistable. We map the bistable regime as a function of drive frequency and amplitude, and suggest several applications for the bistable microcantilever, of which a mechanical memory is demonstrated.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped–clamped beam resonator, which is deliberately fabricated as a shallow arch, thereby proving the memory concept.
Abstract: We demonstrate a memory device based on the nonlinear dynamics of an in-plane microelectromechanical systems (MEMS) clamped-clamped beam resonator, which is deliberately fabricated as a shallow arch. The arch beam is made of silicon, and is electrostatically actuated. The concept relies on the inherent quadratic nonlinearity originating from the arch curvature, which results in a softening behavior that creates hysteresis and co-existing states of motion. Since it is independent of the electrostatic force, this nonlinearity gives more flexibility in the operating conditions and allows for lower actuation voltages. Experimental results are generated through electrical characterization setup. Results are shown demonstrating the switching between the two vibrational states with the change of the direct current (DC) bias voltage, thereby proving the memory concept.

35 citations


Cites background from "Mechanical stiffening, bistability,..."

  • ...[8] investigated the nonlinear dynamics of a micro-cantilever driven...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes, which enables direct measurement of the frequency response via amplitude-and phase modulation schemes using the fundamental mode as a mechanical detector.
Abstract: We demonstrate a strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement of the frequency response via amplitude- and phase modulation schemes using the fundamental mode as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz is observed for a mode with a line width of 5.8 Hz in vacuum. The measured response is well-described by the analytical model based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-temperature Q-factor of 4.5×105 for our top-down fabricated micromechanical beam resonators.

34 citations

Journal ArticleDOI
TL;DR: In the nonlinearly driven cantilever, the adsorption and desorption-induced frequency shifts were enhanced by over a factor of three compared to resonant sensing with the same mode in the linear regime, demonstrating a route towards gas detectors that exploit nonlinearity to enhance the responsivity.
Abstract: Cantilevers play an important role as linear transducers in nanoscience, with nanomechanical detection of mass and stress as a clear example. We performed gas sensing experiments with a standard functionalized cantilever driven strongly into the regime of nonlinear oscillations. We compared the cantilever response to the selective adsorption of ethanol vapour in the nonlinear regime, to the ones obtained in the conventional linear static and dynamic sensing modes. In the nonlinearly driven cantilever, the adsorption and desorption-induced frequency shifts were enhanced by over a factor of three compared to resonant sensing with the same mode in the linear regime. This demonstrates a route towards gas detectors that exploit nonlinearity to enhance the responsivity, which can be implemented with standard cantilever devices.

33 citations

Journal ArticleDOI
TL;DR: Enhanced mechanical coupling at the multiferroic interface and tunability of the resonant frequency are used to devise bistable dynamic states that can be reversibly switched by both DC magnetic and electric fields.
Abstract: Multiferroic heterostructures consisting of Pb(Zr0·52Ti0·48)O3 and Fe0.7Ga0.3 thin films are integrated on microfabricated Si cantilevers, and they are operated in a non-linear regime. Enhanced mechanical coupling at the multiferroic interface and tunability of the resonant frequency are used to devise bistable dynamic states that can be reversibly switched by both DC magnetic and electric fields.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate mechanical mode coupling between the four fundamental vibrational modes of two doubly clamped, high-Q silicon-nitride nanomechanical string resonators.
Abstract: We investigate mechanical mode coupling between the four fundamental flexural modes of two doubly clamped, high-Q silicon-nitride nanomechanical string resonators. Strong mechanical coupling between the strings is induced by the strain mediated via a shared clamping point, engineered to increase the exchange of oscillatory energy. One of the resonators is controlled dielectrically, which results in strong coupling between its out-of-plane and in-plane flexural modes. We show both inter-string out-of-plane-in-plane and 3-mode resonances of the four coupled fundamental vibrational modes of a resonator pair, giving rise to a simple and a multimode avoided crossing, respectively.

26 citations

References
More filters
Journal ArticleDOI
15 Jul 2004-Nature
TL;DR: The long relaxation time of the measured signal suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
Abstract: Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.

1,379 citations

Journal Article
TL;DR: In this article, the authors reported the detection of an individual electron spin by magnetic resonance force microscopy (MRFM) and achieved a spatial resolution of 25nm in one dimension for an unpaired spin in silicon dioxide.
Abstract: Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 µm remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 1012 nuclear spins for MRI-based microscopy, or 107 electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.

1,192 citations

Journal ArticleDOI
01 Jan 1978
TL;DR: In this article, a set of mathematically consistent governing differential equations of motion describing the nonplanar, nonlinear dynamics of an inextensional beam is developed with the objective of retaining contributions due to nonlinear curvature as well as nonlinear inertia.
Abstract: This paper is divided into two parts. The authors’ purpose in Part I is to formulate a set of mathematically consistent governing differential equations of motion describing the nonplanar, nonlinear dynamics of an inextensional beam. The beam is assumed to undergo flexure about two principal axes and torsion. The equations are developed with the objective of retaining contributions due to nonlinear curvature as well as nonlinear inertia. A priori ordering assumptions are avoided as much as possible in the process. The equations are expanded to contain nonlinearities up to order three to facilitate comparison with analogous equations in the literature, and to render them amenable to the study of moderately large amplitude flexural-torsional oscillations by perturbation techniques. The utilization of the order-three equations in the analysis of nonlinear beam oscillations is the subject of Part II.

362 citations

Journal ArticleDOI
TL;DR: In this paper, the atomic force microscope (AFM) tip and sample are adjusted by pH and electrolytes to distribute the force applied to the AFM tip over a large sample area.

354 citations

Journal ArticleDOI
TL;DR: Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory, and the absence of on-chip dissipation is shown.
Abstract: We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of a rf-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier are speed, high sensitivity, low backaction, and the absence of on-chip dissipation. Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory.

328 citations