scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mechanics of deformation and acoustic propagation in porous media

01 Apr 1962-Journal of Applied Physics (AIP Publishing)-Vol. 33, Iss: 4, pp 1482-1498
TL;DR: In this paper, a unified treatment of the mechanics of deformation and acoustic propagation in porous media is presented, and some new results and generalizations are derived, including anisotropic media, solid dissipation, and other relaxation effects.
Abstract: A unified treatment of the mechanics of deformation and acoustic propagation in porous media is presented, and some new results and generalizations are derived. The writer's earlier theory of deformation of porous media derived from general principles of nonequilibrium thermodynamics is applied. The fluid‐solid medium is treated as a complex physical‐chemical system with resultant relaxation and viscoelastic properties of a very general nature. Specific relaxation models are discussed, and the general applicability of a correspondence principle is further emphasized. The theory of acoustic propagation is extended to include anisotropic media, solid dissipation, and other relaxation effects. Some typical examples of sources of dissipation other than fluid viscosity are considered.

Content maybe subject to copyright    Report

Citations
More filters
Book
01 Jan 2011
TL;DR: In this article, the authors present basic tools for elasticity and Hooke's law, effective media, granular media, flow and diffusion, and fluid effects on wave propagation for wave propagation.
Abstract: Preface 1. Basic tools 2. Elasticity and Hooke's law 3. Seismic wave propagation 4. Effective media 5. Granular media 6. Fluid effects on wave propagation 7. Empirical relations 8. Flow and diffusion 9. Electrical properties Appendices.

2,007 citations

Journal ArticleDOI
TL;DR: In this article, the response of a Newtonian fluid saturating the pore space of a rigid isotropic porous medium, subjected to an infinitesimal oscillatory pressure gradient across the sample, is considered.
Abstract: We consider the response of a Newtonian fluid, saturating the pore space of a rigid isotropic porous medium, subjected to an infinitesimal oscillatory pressure gradient across the sample. We derive the analytic properties of the linear response function as well as the high- and low-frequency limits. In so doing we present a new and well-defined parameter Λ, which enters the high-frequency limit, characteristic of dynamically connected pore sizes. Using these results we construct a simple model for the response in terms of the exact high- and low-frequency parameters; the model is very successful when compared with direct numerical simulations on large lattices with randomly varying tube radii. We demonstrate the relevance of these results to the acoustic properties of non-rigid porous media, and we show how the dynamic permeability/tortuosity can be measured using superfluid 4He as the pore fluid. We derive the expected response in the case that the internal walls of the pore space are fractal in character.

1,872 citations

Journal ArticleDOI
TL;DR: In this article, the Brinkman correction is used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface, and the analysis clearly indicates why the Brimmerman correction should not be used to adjust the slip condition.
Abstract: Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.

1,605 citations

MonographDOI
09 Jan 2020
TL;DR: The third edition of the reference book as discussed by the authors has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results, and highlights applications in unconventional reservoirs, including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates.
Abstract: Responding to the latest developments in rock physics research, this popular reference book has been thoroughly updated while retaining its comprehensive coverage of the fundamental theory, concepts, and laboratory results. It brings together the vast literature from the field to address the relationships between geophysical observations and the underlying physical properties of Earth materials - including water, hydrocarbons, gases, minerals, rocks, ice, magma and methane hydrates. This third edition includes expanded coverage of topics such as effective medium models, viscoelasticity, attenuation, anisotropy, electrical-elastic cross relations, and highlights applications in unconventional reservoirs. Appendices have been enhanced with new materials and properties, while worked examples (supplemented by online datasets and MATLAB® codes) enable readers to implement the workflows and models in practice. This significantly revised edition will continue to be the go-to reference for students and researchers interested in rock physics, near-surface geophysics, seismology, and professionals in the oil and gas industries.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of thermodynamic relationships, empirical trends, and new and published data was used to examine the effects of pressure, temperature, and composition on these important seismic properties of hydrocarbon gases and oils and of brines.
Abstract: Pore fluids strongly influence the seismic properties of rocks. The densities, bulk moduli, velocities, and viscosities of common pore fluids are usually oversimplified in geophysics. We use a combination of thermodynamic relationships, empirical trends, and new and published data to examine the effects of pressure, temperature, and composition on these important seismic properties of hydrocarbon gases and oils and of brines. Estimates of in-situ conditions and pore fluid composition yield more accurate values of these fluid properties than are typically assumed. Simplified expressions are developed to facilitate the use of realistic fluid properties in rock models. Pore fluids have properties that vary substantially, but systematically, with composition, pressure, and temperature. Gas and oil density and modulus, as well as oil viscosity, increase with molecular weight and pressure, and decrease with temperature. Gas viscosity has a similar behavior, except at higher temperatures and lower pressures, where the viscosity will increase slightly with increasing temperature. Large amounts of gas can go into solution in lighter oils and substantially lower the modulus and viscosity. Brine modulus, density, and viscosities increase with increasing salt content and pressure. Brine is peculiar because the modulus reaches a maximum at a temperature from 40 to 80°C. Far less gas can be absorbed by brines than by light oils. As a result, gas in solution in oils can drive their modulus so far below that of brines that seismic reflection bright spots may develop from the interface between oil saturated and brine saturated rocks.

1,315 citations

References
More filters
Book
01 Jan 1892
TL;DR: Webb's work on elasticity as mentioned in this paper is the outcome of a suggestion made to me some years ago by Mr R. R. Webb that I should assist him in the preparation of a work on Elasticity.
Abstract: The present treatise is the outcome of a suggestion made to me some years ago by Mr R. R. Webb that I should assist him in the preparation of a work on Elasticity. He has unfortunately found himself unable to proceed with it, and I have therefore been obliged to take upon myself the whole of the work and the whole of the responsibility. I wish to acknowledge at the outset the debt that I owe to him as a teacher of the subject, as well as my obligation for many valuable suggestions chiefly with reference to the scope and plan of the work, and to express my regret that other engagements have prevented him from sharing more actively in its production. The division of the subject adopted is that originally made by Clebsch in his classical treatise, where a clear distinction is ill-awn between exact solutions for bodies all whose dimensions are finite and approximate solutions for bodies some of whose dimensions can be regarded as infinitesimal. The present volume contains the general mathematical theory of the elastic properties of the first class of bodies, and I propose to treat the second class in another volume. At Mr Webb's suggestion, the exposition of the theory is preceded by an historical sketch of its origin and development. Anything like an exhaustive history has been rendered unnecessary by the work of the late Dr Todhunter as edited by Prof Karl Pearson, but it is hoped that the brief account given will at once facilitate the comprehension of the theory and add to its interest. Readers of the historical work referred to will appreciate the difficulty of giving within a reasonable compass a complete account of all the valuable researches that have been made; and the aim of this book is rather to present a connected account of the theory in its present state, and an indication of the way in which that state has been attained, avoiding on the one hand merely analytical developments, and on the other purely technical details.

7,269 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of propagation of stress waves in a porous elastic solid developed in Part I for the low-frequency range is extended to higher frequencies, and the breakdown of Poiseuille flow beyond the critical frequency is discussed for pores of flat and circular shapes.
Abstract: The theory of propagation of stress waves in a porous elastic solid developed in Part I for the low‐frequency range is extended to higher frequencies. The breakdown of Poiseuille flow beyond the critical frequency is discussed for pores of flat and circular shapes. As in Part I the emphasis of the treatment is on cases where fluid and solids are of comparable densities. Dispersion curves for phase and group velocities along with attenuation factors are plotted versus frequency for the rotational and the two dilational waves and for six numerical combinations of the characteristic parameters of the porous systems. Asymptotic behavior at high frequency is also discussed.

3,600 citations

Journal ArticleDOI
TL;DR: In this article, a unified treatment of thermoelasticity by application and further developments of the methods of irreversible thermodynamics is presented, along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement.
Abstract: A unified treatment is presented of thermoelasticity by application and further developments of the methods of irreversible thermodynamics. The concept of generalized free energy introduced in a previous publication plays the role of a ``thermoelastic potential'' and is used along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement. The general laws of thermoelasticity are formulated in a variational form along with a minimum entropy production principle. This leads to equations of the Lagrangian type, and the concept of thermal force is introduced by means of a virtual work definition. Heat conduction problems can then be formulated by the methods of matrix algebra and mechanics. This also leads to the very general property that the entropy density obeys a diffusion‐type law. General solutions of the equations of thermoelasticity are also given using the Papkovitch‐Boussinesq potentials. Examples are presented and it is shown how the generalized coordinate method may be used to calculate the thermoelastic internal damping of elastic bodies.

2,287 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the critical value of the shearing stress can be made arbitrarily small simply by increasing the fluid pressure p. This can be further simplified by expressing p in terms of S by means of the equation which, when introduced into equation (4), gives
Abstract: Promise of resolving the paradox of overthrust faulting arises from a consideration of the influence of the pressure of interstitial fluids upon the effective stresses in rocks. If, in a porous rock filled with a fluid at pressure p, the normal and shear components of total stress across any given plane are S and T, then are the corresponding components of the effective stress in the solid alone. According to the Mohr-Coulomb law, slippage along any internal plane in the rock should occur when the shear stress along that plane reaches the critical value where σ is the normal stress across the plane of slippage, τ 0 the shear strength of the material when σ is zero, and ϕ the angle of internal friction. However, once a fracture is started τ 0 is eliminated, and further slippage results when This can be further simplified by expressing p in terms of S by means of the equation which, when introduced into equation (4), gives From equations (4) and (6) it follows that, without changing the coefficient of friction tan ϕ , the critical value of the shearing stress can be made arbitrarily small simply by increasing the fluid pressure p. In a horizontal block the total weight per unit area S zz is jointly supported by the fluid pressure p and the residual solid stress σ zz ; as p is increased, σ zz is correspondingly diminished until, as p approaches the limit S zz , or λ approaches 1, σ zz approaches 0. For the case of gravitational sliding, on a subaerial slope of angle θ where T is the total shear stress, and S the total normal stress on the inclined plane. However, from equations (2) and (6) Then, equating the right-hand terms of equations (7) and (8), we obtain which indicates that the angle of slope θ down which the block will slide can be made to approach 0 as λ approaches 1, corresponding to the approach of the fluid pressure p to the total normal stress S . Hence, given sufficiently high fluid pressures, very much longer fault blocks could be pushed over a nearly horizontal surface, or blocks under their own weight could slide down very much gentler slopes than otherwise would be possible. That the requisite pressures actually do exist is attested by the increasing frequency with which pressures as great as 0.9 S zz are being observed in deep oil wells in various parts of the world.

1,871 citations

Journal ArticleDOI
TL;DR: In this paper, the elasticity and consolidation theory of isotropic materials is extended to the general case of anisotropy and the method of derivation is also different and more direct.
Abstract: The author's previous theory of elasticity and consolidation for isotropic materials [J. Appl. Phys. 12, 155–164 (1941)] is extended to the general case of anisotropy. The method of derivation is also different and more direct. The particular cases of transverse isotropy and complete isotropy are discussed.

1,864 citations