scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mechanisms and consequences of Jak–STAT signaling in the immune system

01 Apr 2017-Nature Immunology (Nature Research)-Vol. 18, Iss: 4, pp 374-384
TL;DR: Recent advances in Jak–STAT biology are reviewed, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Abstract: Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Citations
More filters
Journal ArticleDOI
TL;DR: Tocilizumab is a blocker of IL-6R, which can effectively block IL- 6 signal transduction pathway, and is likely to become an effective drug for patients with severe COVID-19.

1,378 citations

Journal ArticleDOI
TL;DR: An overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors are provided.
Abstract: Receptor tyrosine kinase signalling pathways have been successfully targeted to inhibit proliferation and angiogenesis for cancer therapy. However, kinase deregulation has been firmly demonstrated to play an essential role in virtually all major disease areas. Kinase inhibitor drug discovery programmes have recently broadened their focus to include an expanded range of kinase targets and therapeutic areas. In this Review, we provide an overview of the novel targets, biological processes and disease areas that kinase-targeting small molecules are being developed against, highlight the associated challenges and assess the strategies and technologies that are enabling efficient generation of highly optimized kinase inhibitors.

620 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent advances in the understanding of the transcriptional, chromatin-based and metabolic mechanisms that underlie IFNγ-mediated polarization of macrophages to an ‘M1-like’ state, which is characterized by increased pro-inflammatory activity and macrophage resistance to tolerogenic and anti-inflammatory factors.
Abstract: IFNγ is a cytokine with important roles in tissue homeostasis, immune and inflammatory responses and tumour immunosurveillance. Signalling by the IFNγ receptor activates the Janus kinase (JAK)–signal transducer and activator of transcription 1 (STAT1) pathway to induce the expression of classical interferon-stimulated genes that have key immune effector functions. This Review focuses on recent advances in our understanding of the transcriptional, chromatin-based and metabolic mechanisms that underlie IFNγ-mediated polarization of macrophages to an ‘M1-like’ state, which is characterized by increased pro-inflammatory activity and macrophage resistance to tolerogenic and anti-inflammatory factors. In addition, I describe the newly discovered effects of IFNγ on other leukocytes, vascular cells, adipose tissue cells, neurons and tumour cells that have important implications for autoimmunity, metabolic diseases, atherosclerosis, neurological diseases and immune checkpoint blockade cancer therapy.

576 citations

Journal ArticleDOI
TL;DR: The key roles of the IL-6 cytokine family in regulating innate and adaptive immunity, as well as other physiological responses are considered, which highlight the potential of targeting IL- 6 family members to treat inflammatory diseases and cancer.
Abstract: The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease.

563 citations

01 Dec 2016
TL;DR: Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions, and posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation.
Abstract: Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.

539 citations

References
More filters
Journal ArticleDOI
TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Abstract: Approximately 10% of peripheral CD4+ cells and less than 1% of CD8+ cells in normal unimmunized adult mice express the IL-2 receptor alpha-chain (CD25) molecules. When CD4+ cell suspensions prepared from BALB/c nu/+ mice lymph nodes and spleens were depleted of CD25+ cells by specific mAb and C, and then inoculated into BALB/c athymic nude (nu/nu) mice, all recipients spontaneously developed histologically and serologically evident autoimmune diseases (such as thyroiditis, gastritis, insulitis, sialoadenitis, adrenalitis, oophoritis, glomerulonephritis, and polyarthritis); some mice also developed graft-vs-host-like wasting disease. Reconstitution of CD4+CD25+ cells within a limited period after transfer of CD4+CD25- cells prevented these autoimmune developments in a dose-dependent fashion, whereas the reconstitution several days later, or inoculation of an equivalent dose of CD8+ cells, was far less efficient for the prevention. When nu/nu mice were transplanted with allogeneic skins or immunized with xenogeneic proteins at the time of CD25- cell inoculation, they showed significantly heightened immune responses to the skins or proteins, and reconstitution of CD4+CD25+ cells normalized the responses. Taken together, these results indicate that CD4+CD25+ cells contribute to maintaining self-tolerance by down-regulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage; elimination/reduction of CD4+CD25+ cells relieves this general suppression, thereby not only enhancing immune responses to non-self Ags, but also eliciting autoimmune responses to certain self-Ags. Abnormality of this T cell-mediated mechanism of peripheral tolerance can be a possible cause of various autoimmune diseases.

5,929 citations

Journal ArticleDOI
03 Jun 1994-Science
TL;DR: A previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that phosphorylate substrate proteins called STATs (signal transducers and activators of transcription).
Abstract: Through the study of transcriptional activation in response to interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma), a previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that then phosphorylate substrate proteins called STATs (signal transducers and activators of transcription). The phosphorylated STAT proteins move to the nucleus, bind specific DNA elements, and direct transcription. Recognition of the molecules involved in the IFN-alpha and IFN-gamma pathway has led to discoveries that a number of STAT family members exist and that other polypeptide ligands also use the Jak-STAT molecules in signal transduction.

5,746 citations

Journal ArticleDOI
TL;DR: Genetic evidence and in vitro functional studies indicate that V617F gives hematopoietic precursors proliferative and survival advantages and a high proportion of patients with myeloproliferative disorders carry a dominant gain-of-function mutation of JAK2.
Abstract: background Polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are clonal myeloproliferative disorders arising from a multipotent progenitor. The loss of heterozygosity (LOH) on the short arm of chromosome 9 (9pLOH) in myeloproliferative disorders suggests that 9p harbors a mutation that contributes to the cause of clonal expansion of hematopoietic cells in these diseases. methods We performed microsatellite mapping of the 9pLOH region and DNA sequencing in 244 patients with myeloproliferative disorders (128 with polycythemia vera, 93 with essential thrombocythemia, and 23 with idiopathic myelofibrosis). results Microsatellite mapping identified a 9pLOH region that included the Janus kinase 2 ( JAK2 )

3,391 citations

Journal ArticleDOI
TL;DR: A single acquired mutation of JAK2 was noted in more than half of patients with a myeloproliferative disorder and its presence in all erythropoietin-independent erythroid colonies demonstrates a link with growth factor hypersensitivity, a key biological feature of these disorders.

3,326 citations

Journal ArticleDOI
28 Apr 2005-Nature
TL;DR: A clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (> 80%) polycythaemia vera patients leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model.
Abstract: Myeloproliferative disorders are clonal haematopoietic stem cell malignancies characterized by independency or hypersensitivity of haematopoietic progenitors to numerous cytokines(1,2). The molecular basis of most myeloproliferative disorders is unknown. On the basis of the model of chronic myeloid leukaemia, it is expected that a constitutive tyrosine kinase activity could be at the origin of these diseases. Polycythaemia vera is an acquired myeloproliferative disorder, characterized by the presence of polycythaemia diversely associated with thrombocytosis, leukocytosis and splenomegaly(3). Polycythaemia vera progenitors are hypersensitive to erythropoietin and other cytokines(4,5). Here, we describe a clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (>80%) polycythaemia vera patients. The mutation, a valine-to-phenylalanine substitution at amino acid position 617, leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model. As this mutation is also found in other myeloproliferative disorders, this unique mutation will permit a new molecular classification of these disorders and novel therapeutical approaches.

3,326 citations