scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin.

09 Jul 2021-Nucleic Acids Research (Oxford University Press (OUP))-Vol. 49, Iss: 12, pp 6880-6892
TL;DR: In this article, fast kinetics were employed to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK).
Abstract: How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.
Citations
More filters
Journal ArticleDOI
TL;DR: Novel approaches such as monoclonal antibody treatments for P. aeruginosa and S. aureus and phage antibiotic synthesis are highlighted and mechanisms of resistance in Gram-negative bacteria, virulence factors, and inhaled antibiotics are examined.
Abstract: ABSTRACT Introduction Ventilator-associated pneumonia (VAP) is common; its prevalence has been highlighted by the Covid-19 pandemic. Even young patients can suffer severe nosocomial infection and prolonged mechanical ventilation. Multidrug-resistant bacteria can spread alarmingly fast around the globe and new antimicrobials are struggling to keep pace; hence physicians must stay abreast of new developments in the treatment of nosocomial pneumonia and VAP. Areas Covered This narrative review examines novel antimicrobial investigational drugs and their implementation in the ICU setting for VAP. This paper highlights novel approaches such as monoclonal antibody treatments for P. aeruginosa and S. aureus and phage antibiotic synthesis. This paper also examines mechanisms of resistance in Gram-negative bacteria, virulence factors, and inhaled antibiotics and questions what may be on the horizon in terms of emerging treatment strategies. Expert opinion The postantibiotic era is rapidly approaching, and the need for personalized medicine, point-of-care microbial sensitivity testing, and development of biomarkers for severe infections is clear. Results from emerging and new antibiotics are encouraging, but infection control measures and de-escalation protocols must be employed to prolong their usefulness in critical illness.

4 citations

Journal ArticleDOI
TL;DR: Using single-particle cryo-electron microscopy, this paper determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells.
Abstract: Abstract Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-electron microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal proteins, but retain some bacterial features. The translocation intermediates, with naturally bound tRNAs and eukaryotic elongation factor 2 (eEF2), display characteristic ribosomal intersubunit rotation and small subunit’s head swiveling—universal for translocation. In addition, we observe the eukaryote-specific ‘subunit rolling’ dynamics, albeit with limited features. Finally, the eEF2·GDP state features a uniquely positioned ‘leaving phosphate (Pi)’ that proposes hitherto unknown molecular events of Pi and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes from both the structural and mechanistic perspectives.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors show that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation.
Abstract: Abstract Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.
Journal ArticleDOI
TL;DR: In this article , the authors discuss recent advances in this area and how this might affect the future use of aminoglycosides and reveal a complex relationship between metabolic states and the efficacy of different aminogloccosides.
Abstract: Following the discovery of streptomycin from Streptomyces griseus in the 1940s by Selman Waksman and colleagues, aminoglycosides were first used to treat tuberculosis and then numerous derivatives have since been used to combat a wide variety of bacterial infections. These bactericidal antibiotics were used as first-line treatments for several decades but were largely replaced by ß-lactams and fluoroquinolones in the 1980s, although widespread emergence of antibiotic-resistance has led to renewed interest in aminoglycosides. The primary site of action for aminoglycosides is the 30 S ribosomal subunit where they disrupt protein translation, which contributes to widespread cellular damage through a number of secondary effects including rapid uptake of aminoglycosides via elevated proton-motive force (PMF), membrane damage and breakdown, oxidative stress, and hyperpolarisation of the membrane. Several factors associated with aminoglycoside entry have been shown to impact upon bacterial killing, and more recent work has revealed a complex relationship between metabolic states and the efficacy of different aminoglycosides. Hence, it is imperative to consider the environmental conditions and bacterial physiology and how this can impact upon aminoglycoside entry and potency. This mini-review seeks to discuss recent advances in this area and how this might affect the future use of aminoglycosides.
Journal ArticleDOI
TL;DR: In this paper , a series of 6-deoxykanamycin A analogues with additional protonatable groups (amino-, guanidino or pyridinium) were synthesized and tested their biological activities.
Abstract: Aminoglycosides are one of the first classes of antibiotics to have been used clinically, and they are still being used today. They have a broad spectrum of antimicrobial activity, making them effective against many different types of bacteria. Despite their long history of use, aminoglycosides are still considered promising scaffolds for the development of new antibacterial agents, particularly as bacteria continue to develop resistances to existing antibiotics. We have synthesized a series of 6″-deoxykanamycin A analogues with additional protonatable groups (amino-, guanidino or pyridinium) and tested their biological activities. For the first time we have demonstrated the ability of the tetra-N-protected-6″-O-(2,4,6-triisopropylbenzenesulfonyl)kanamycin A to interact with a weak nucleophile, pyridine, resulting in the formation of the corresponding pyridinium derivative. Introducing small diamino-substituents at the 6″-position of kanamycin A did not significantly alter the antibacterial activity of the parent antibiotic, but further modification by acylation resulted in a complete loss of the antibacterial activity. However, introducing a guanidine residue led to a compound with improved activity against S. aureus. Moreover, most of the obtained 6″-modified kanamycin A derivatives were less influenced by the resistant mechanism associated with mutations of the elongation factor G than the parent kanamycin A. This suggests that modifying the 6″-position of kanamycin A with protonatable groups is a promising direction for the further development of new antibacterial agents with reduced resistances.
References
More filters
Journal ArticleDOI
21 Sep 2000-Nature
TL;DR: The functional implications of the high-resolution 30S crystal structure are described, and details of the interactions between the 30S subunit and its tRNA and mRNA ligands are inferred, which lead to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process.
Abstract: The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process.

1,508 citations

Journal ArticleDOI
04 Jun 1987-Nature
TL;DR: Chemical footprinting shows that several classes of antibiotics protect concise sets of highly conserved nucleotides in 16S ribosomal RNA when bound to ribosomes, having strong implications for the mechanism of action of these antibiotics and for the assignment of functions to specific structural features of 16S rRNA.
Abstract: Chemical footprinting shows that several classes of antibiotics (streptomycin, tetracycline, spectinomycin, edeine, hygromycin and the neomycins) protect concise sets of highly conserved nucleotides in 16S ribosomal RNA when bound to ribosomes These findings have strong implications for the mechanism of action of these antibiotics and for the assignment of functions to specific structural features of 16S rRNA

1,116 citations

Journal ArticleDOI
TL;DR: The successful development of new aminoglycosides refractory to as many as possible modifying enzymes would extend the useful life of existing antibiotics that have proven effective in the treatment of infections.

965 citations

Journal ArticleDOI
TL;DR: The recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance are discussed, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.
Abstract: The ribosome is one of the main antibiotic targets in the bacterial cell. Crystal structures of naturally produced antibiotics and their semi-synthetic derivatives bound to ribosomal particles have provided unparalleled insight into their mechanisms of action, and they are also facilitating the design of more effective antibiotics for targeting multidrug-resistant bacteria. In this Review, I discuss the recent structural insights into the mechanism of action of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance, in addition to the approaches that are being pursued for the production of improved drugs that inhibit bacterial protein synthesis.

757 citations