scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MeCP2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system

TL;DR: In this paper, a quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo is presented.
Abstract: SUMMARY The high level of 5-hydroxymethylcytosine (5hmC) present in neuronal genomes suggests that mechanisms interpreting 5hmC in the CNS may differ from those present in embryonic stem cells. Here, we present quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo. We report that 5hmC is enriched in active genes and that, surprisingly, strong depletion of 5mC is observed over these regions. The contribution of these epigenetic marks to gene expression depends critically on cell type. We identify methyl-CpG-binding protein 2 (MeCP2) as the major 5hmC-binding protein in the brain and demonstrate that MeCP2 binds 5hmC- and 5mC-containing DNA with similar high affinities. The Rett-syndrome-causing mutation R133C preferentially inhibits 5hmC binding. These findings support a model in which 5hmC and MeCP2 constitute a cell-specific epigenetic mechanism for regulation of chromatin structure and gene expression.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Findings indicated that BPA exposure was associated with alterations of sperm LINE-1 hydroxymethylation, which might have implications for understanding the mechanisms underlying BPA-induced adverse effects on male reproductive function.
Abstract: Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, has been shown to alter DNA methylation. However, little information is available about the effect of BPA exposure on DNA hydroxymethylation in humans. The objective of the present study was to examine whether BPA exposure was associated with DNA hydroxymethylation in human semen samples. We measured urine BPA levels and LINE-1 hydroxymethylation in 158 male factory workers selected from an occupational cohort study conducted in China between 2004 and 2008. Among them, there were 72 male workers with occupational BPA exposure (BPA-exposed group) and 86 male workers without occupational BPA exposure (unexposed group). Multivariate linear regression models were used to examine the association of exposure to BPA with LINE-1 hydroxymethylation. LINE-1 was more highly hydroxymethylated in the BPA-exposed group than in the unexposed group (median 12.97% vs. 9.68%, respectively; p < 0.05), after adjusting for the potential confounders. The medians of 5-hydroxymethylcytosine (5hmC) generally increased with increasing urine BPA levels: 8.79%, 12.16%, 11.53%, and 13.45%, for undetected BPA and corresponding tertiles for the detected BPA, respectively. After analysis using data at individual level, our findings indicated that BPA exposure was associated with alterations of sperm LINE-1 hydroxymethylation, which might have implications for understanding the mechanisms underlying BPA-induced adverse effects on male reproductive function.

22 citations

Journal ArticleDOI
TL;DR: This study seeks to define loci enriched for 5hmC in the placenta genome by combining oxidative bisulphite (oxBS) treatment with high-density Illumina Infinium HumanMethylation450 methylation arrays and to compare results with those obtained in brain.
Abstract: DNA methylation (5-methylcytosine, 5 mC) is involved in many cellular processes and is an epigenetic mechanism primarily associated with transcriptional repression. The recent discovery that 5 mC can be oxidized to 5-hydromethylcytosine (5hmC) by TET proteins has revealed the "sixth base" of DNA and provides additional complexity to what was originally thought to be a stable repressive mark. However, our knowledge of the genome-wide distribution of 5hmC in different tissues is currently limited. Here, we sought to define loci enriched for 5hmC in the placenta genome by combining oxidative bisulphite (oxBS) treatment with high-density Illumina Infinium HumanMethylation450 methylation arrays and to compare our results with those obtained in brain. Despite identifying over 17,000 high-confidence CpG sites with consistent 5hmC enrichment, the distribution of this modification in placenta is relatively sparse when compared to cerebellum and frontal cortex. Supported by validation using allelic T4 β-glucosyltransferase assays we identify 5hmC at numerous imprinted loci, often overlapping regions associated with parent-of-origin allelic 5 mC in both placenta and brain samples. Furthermore, we observe tissue-specific monoallelic enrichment of 5hmC overlapping large clusters of imprinted snoRNAs-miRNAs processed from long noncoding RNAs (lncRNAs) within the DLK1-DIO3 cluster on chromosome 14 and SNRPN-UBE3A domain on chromosome 15. Enrichment is observed solely on the transcribed alleles suggesting 5hmC is positively associated with transcription at these loci. Our study provides an extensive description of the 5hmC/5 mC landscape in placenta with our data available at www.humanimprints.net , which represents the most comprehensive resource for exploring the epigenetic profiles associated with human imprinted genes.

22 citations


Cites background from "MeCP2 binds to 5hmc enriched within..."

  • ...regions [7], and it has been recently shown that it can be specifically recognized by several DNA-binding proteins [8,9]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors provide a conceptual framework of the mechanisms that fine tune TET activity and specifically focus on the multifaceted roles of TET proteins in regulating gene expression in immune cell development, function, and disease.
Abstract: TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. The oxidized methylcytosines (oxi-mCs) facilitate DNA demethylation and are also novel epigenetic marks. TET loss-of-function is strongly associated with cancer; TET2 loss-of-function mutations are frequently observed in hematological malignancies that are resistant to conventional therapies. Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we seek to provide a conceptual framework of the mechanisms that fine tune TET activity. Then, we specifically focus on the multifaceted roles of TET proteins in regulating gene expression in immune cell development, function, and disease.

22 citations

Journal ArticleDOI
TL;DR: It is shown that DNA methylation is sensitive to in vitro culture, and the results suggest that gene expression could be affected on a large scale, but this remains to be confirmed.
Abstract: Study question In comparison to in vivo development, how do different conditions of in vitro culture ('one step' versus 'sequential medium') impact DNA methylation and hydroxymethylation in preimplantation embryos? Summary answer Using rabbit as a model, we show that DNA methylation and hydroxymethylation are both affected by in vitro culture of preimplantation embryos and the effect observed depends on the culture medium used. What is known already Correct regulation of DNA methylation is essential for embryonic development and DNA hydroxymethylation appears more and more to be a key player. Modifications of the environment of early embryos are known to have long term effects on adult phenotypes and health; these probably rely on epigenetic alterations. Study design size, duration The study design we used is both cross sectional (control versus treatment) and longitudinal (time-course). Each individual in vivo experiment used embryos flushed from the donor at the 2-, 4-, 8-, 16- or morula stage. Each stage was analyzed in at least two independent experiments. Each individual in vitro experiment used embryos flushed from donors at the 1-cell stage (19 h post-coitum) which were then cultured in parallel in the two tested media until the 2-, 4-, 8- 16-cell or morula stages. Each stage was analyzed in at least three independent experiments. In both the in vivo and in vitro experiments, 4-cell stage embryos were always included as an internal reference. Participants/materials, setting, methods Immunofluorescence with antibodies specific for 5-methylcytosine (5meC) and 5-hydroxymethylcytosine (5hmeC) was used to quantify DNA methylation and hydroxymethylation levels in preimplantation embryos. We assessed the expression of DNA methyltransferases (DNMT), of ten eleven translocation (TET) dioxigenases and of two endogenous retroviral sequences (ERV) using RT-qPCR, since the expression of endogenous retroviral sequences is known to be regulated by DNA methylation. Three repeats were first done for all stages; then three additional repetitions were performed for those stages showing differences or tendencies toward differences between the different conditions in the first round of quantification. Main results and the role of chance The kinetics of DNA methylation and hydroxymethylation were modified in in vitro cultured embryos, and the observed differences depended on the type of medium used. These differences were statistically significant. In addition, the expression of TET1 and TET2 was significantly reduced in post-embryonic genome activation (EGA) embryos after in vitro culture in both tested conditions. Finally, the expression of two retroviral sequences was analyzed and found to be significantly affected by in vitro culture. Limitations reasons for caution Our study remains mostly descriptive as no direct link can be established between the epigenetic changes observed and the expression changes in both effectors and targets of the studied epigenetic modifications. The results we obtained suggest that gene expression could be affected on a large scale, but this remains to be confirmed. Wider implications of the findings Our results are in agreement with the literature, showing that DNA methylation is sensitive to in vitro culture. As we observed an effect of both tested culture conditions on the tested epigenetic marks and on gene expression, we cannot conclude which medium is potentially closest to in vivo conditions. However, as the observed effects are different, additional studies may provide more information and potential recommendations for the use of culture media in assisted reproductive technology. Study funding/competing interests This work was supported by an 'AMP diagnostic prenatal et diagnostic genetique' 2012 grant from the French Agence de la Biomedecine. This study was performed within the framework of ANR LABEX 'REVIVE' (ANR-10-LABX-73). Authors are members of RGB-Net (TD 1101) and Epiconcept (FA 1201) COST actions. The authors declare that there is no competing interest.

22 citations

Journal Article
Sitong Cui1, Liang Liu1, Teng Wan1, Lei Jiang, Yan Shi1, Liangsheng Luo1 
TL;DR: This is the first study to demonstrate that miR-520b functions as a tumor suppressor in glioma by directly targeting methyl-CpG-binding domain 2 (MBD2), suggesting that MBD2 may be a potential therapeutic target for gliomas.
Abstract: MicroRNAs play important roles in the process of cancer, which microRNA-520b (miR-520b) has been reported to play critical roles in tumor progression in many types of cancers. However, its role in glioma remains unknown. In this study, we found that miR-520b could inhibit growth and progression in glioma by targeting methyl-CpG-binding domain 2 (MBD2). First, we analyzed the expression of miR-520b in different glioma grades and different cell lines (U87, U251 and astrocyte). Then we assessed the effect of miR-520b on glucose metabolism, invasion, angiogenesis and chemosensitivity in U87 and U251 cells. By using an online database, miR-520b was found to directly bind to the 3'-untranslated regions (3'-UTR) of MBD2 and reduce its expression at the protein level, which further inhibits the development of glioma. MBD2 was also found to be over-expressed in human glioma tissues and in U87 and U251 cells and its level was inversely correlated with that of miR-520b. Furthermore, restoration of MBD2 partially rescued the miR-520b-induced inhibitory effect on glucose metabolism, invasion, angiogenesis and chemosensitivity in glioma cells. In summary, to date, this is the first study to demonstrate that miR-520b functions as a tumor suppressor in glioma by directly targeting MBD2, suggesting that MBD2 may be a potential therapeutic target for glioma.

21 citations


Cites background from "MeCP2 binds to 5hmc enriched within..."

  • ...Apart from MBD3, these proteins preferentially bind 5-methylcytosine over unmethylated cytosine [15]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A method based on the negative binomial distribution, with variance and mean linked by local regression, is proposed and an implementation, DESeq, as an R/Bioconductor package is presented.
Abstract: High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.

13,356 citations

Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations


"MeCP2 binds to 5hmc enriched within..." refers methods in this paper

  • ...Transcript abundance was measured in fragments per kilobase of exon per million fragments mapped (FPKM) similarly to RPKM used in (Mortazavi et al., 2008)....

    [...]

Journal ArticleDOI
TL;DR: Details of the aims and methods of Bioconductor, the collaborative creation of extensible software for computational biology and bioinformatics, and current challenges are described.
Abstract: The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.

12,142 citations


"MeCP2 binds to 5hmc enriched within..." refers methods in this paper

  • ...Finally, differentially expressed genes were identified by performing a negative binomial test using the DESeq package (Anders and Huber, 2010) of R/Bioconductor (Gentleman et al., 2004)....

    [...]

Journal ArticleDOI
15 May 2009-Science
TL;DR: It is shown here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro.
Abstract: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference–mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.

5,155 citations


"MeCP2 binds to 5hmc enriched within..." refers background in this paper

  • ...This is expected because hydroxylation of 5mC results in 5hmC (Tahiliani et al., 2009), and both of these marks cannot exist on one base....

    [...]

Journal ArticleDOI
TL;DR: This study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Abstract: Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.

4,503 citations


"MeCP2 binds to 5hmc enriched within..." refers background in this paper

  • ...…each cell type, the phenotypic consequences of changes in the function of MeCP2, whether as a result of mutation (Adkins and Georgel, 2011; Tao andWu, 2009; Amir et al., 1999) or posttranslational modification (Rutlin and Nelson, 2011; Gonzales et al., 2012), will be cell type and circuit specific....

    [...]