scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0

01 Dec 2013-Molecular Biology and Evolution (Oxford University Press)-Vol. 30, Iss: 12, pp 2725-2729
TL;DR: An advanced version of the Molecular Evolutionary Genetics Analysis software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis, is released, which enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny.
Abstract: We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine, has been optimized for use on 64-bit computing systems for analyzing larger datasets.
Abstract: We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.

33,048 citations


Cites background or methods from "MEGA6: Molecular Evolutionary Genet..."

  • ...calibrations with minimum and/or maximum constraints (Tamura et al. 2013)....

    [...]

  • ...Molecular Evolutionary Genetics Analysis (MEGA) software is now being applied to increasingly bigger datasets (Kumar et al. 1994; Tamura et al. 2013)....

    [...]

  • ...Kumar et al. . doi:10.1093/molbev/msw054 MBE D ow nloaded from https://academ ic.oup.com /m be/article-abstract/33/7/1870/2579089 by guest on 29 M arch 2019 calibrations with minimum and/or maximum constraints (Tamura et al. 2013)....

    [...]

Journal ArticleDOI
TL;DR: The case of an expectant mother who had a febrile illness with rash at the end of the first trimester of pregnancy while she was living in Brazil and revealed microcephaly with calcifications in the fetal brain and placenta is described.
Abstract: Summary A widespread epidemic of Zika virus (ZIKV) infection was reported in 2015 in South and Central America and the Caribbean. A major concern associated with this infection is the apparent increased incidence of microcephaly in fetuses born to mothers infected with ZIKV. In this report, we describe the case of an expectant mother who had a febrile illness with rash at the end of the first trimester of pregnancy while she was living in Brazil. Ultrasonography performed at 29 weeks of gestation revealed microcephaly with calcifications in the fetal brain and placenta. After the mother requested termination of the pregnancy, a fetal autopsy was performed. Micrencephaly (an abnormally small brain) was observed, with almost complete agyria, hydrocephalus, and multifocal dystrophic calcifications in the cortex and subcortical white matter, with associated cortical displacement and mild focal inflammation. ZIKV was found in the fetal brain tissue on reversetranscriptase–polymerase-chain-reaction (RT-PCR) assay, with consistent findings on electron microscopy. The complete genome of ZIKV was recovered from the fetal brain.

2,403 citations

Journal ArticleDOI
14 May 2020-Cell
TL;DR: The crystal structure of the C-terminal domain of SARS-CoV-2 (SARS- coV- 2-CTD) spike (S) protein in complex with human ACE2 (hACE2) is presented, which reveals a hACE2-binding mode similar overall to that observed for SARS -CoV.

2,334 citations

Journal ArticleDOI
TL;DR: It is shown that beyond in silico predictions, testing with mock communities and field samples is important in primer selection, and a single mismatch can strongly bias amplification, but even perfectly matched primers can exhibit preferential amplification.
Abstract: Summary Microbial community analysis via high-throughput sequencing of amplified 16S rRNA genes is an essential microbiology tool. We found the popular primer pair 515F (515F-C) and 806R greatly underestimated (e.g. SAR11) or overestimated (e.g. Gammaproteobacteria) common marine taxa. We evaluated marine samples and mock communities (containing 11 or 27 marine 16S clones), showing alternative primers 515F-Y (5′-GTGYCAGCMGCCGCGGTAA) and 926R (5′-CCGYCAATTYMTTTRAGTTT) yield more accurate estimates of mock community abundances, produce longer amplicons that can differentiate taxa unresolvable with 515F-C/806R, and amplify eukaryotic 18S rRNA. Mock communities amplified with 515F-Y/926R yielded closer observed community composition versus expected (r2 = 0.95) compared with 515F-Y/806R (r2 ∼ 0.5). Unexpectedly, biases with 515F-Y/806R against SAR11 in field samples (∼4–10-fold) were stronger than in mock communities (∼2-fold). Correcting a mismatch to Thaumarchaea in the 515F-C increased their apparent abundance in field samples, but not as much as using 926R rather than 806R. With plankton samples rich in eukaryotic DNA (> 1 μm size fraction), 18S sequences averaged ∼17% of all sequences. A single mismatch can strongly bias amplification, but even perfectly matched primers can exhibit preferential amplification. We show that beyond in silico predictions, testing with mock communities and field samples is important in primer selection.

2,077 citations

Journal ArticleDOI
11 Mar 2016-Science
TL;DR: In this paper, a new bacterium, Ideonella sakaiensis 201-F6, was found to be able to use PET as its major energy and carbon source, producing two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid.
Abstract: Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

1,417 citations

References
More filters
Journal ArticleDOI
TL;DR: This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types.
Abstract: Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each). Vertebrate taxa were subjects in nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each). Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected in methodological evaluations. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of phenotypic evolution.

124 citations

Journal ArticleDOI
TL;DR: The results imply that intersubtype recombination may have occurred in approximately 20% of lineages evolving over a period of 30 years and confirm intersub type recombination as a substantial force in generating HIV-1 group M diversity.
Abstract: West Central Africa has been implicated as the epicenter of the HIV-1 epidemic, and almost all group M subtypes can be found there. Previous analysis of early HIV-1 group M sequences from Kinshasa in the Democratic Republic of Congo, formerly Zaire, revealed that isolates from a number of individuals fall in different positions in phylogenetic trees constructed from sequences from opposite ends of the genome as a result of recombination between viruses of different subtypes. Here, we use discrete ancestral trait mapping to develop a procedure for quantifying HIV-1 group M intersubtype recombination across phylogenies, using individuals9 gag (p17) and env (gp41) subtypes. The method was applied to previously described HIV-1 group M sequences from samples obtained in Kinshasa early in the global radiation of HIV. Nine different p17 and gp41 intersubtype recombinant combinations were present in the data set. The mean number of excess ancestral subtype transitions (NEST) required to map individuals9 p17 subtypes onto the gp14 phylogeny samples, compared to the number required to map them onto the p17 phylogenies, and vice versa, indicated that excess subtype transitions occurred at a rate of approximately 7 × 10−3 to 8 × 10−3 per lineage per year as a result of intersubtype recombination. Our results imply that intersubtype recombination may have occurred in approximately 20% of lineages evolving over a period of 30 years and confirm intersubtype recombination as a substantial force in generating HIV-1 group M diversity.

35 citations


"MEGA6: Molecular Evolutionary Genet..." refers background in this paper

  • ...0, we have now added facilities for building molecular evolutionary trees scaled to time (timetrees), which are clearly needed by scientists as an increasing number of studies are reporting divergence times for species, strains, and duplicated genes (e.g., Kumar and Hedges 2011; Ward et al. 2013)....

    [...]

  • ...…we have now added facilities for building molecular evolutionary trees scaled to time (timetrees), which are clearly needed by scientists as an increasing number of studies are reporting divergence times for species, strains, and duplicated genes (e.g., Kumar and Hedges 2011; Ward et al. 2013)....

    [...]

Journal ArticleDOI

6 citations