scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line

TL;DR: In this paper, the authors employed a CRISPR/Cas9-based genome engineering strategy to excise this sizeable chromosomal fragment and to efficiently and reproducibly derive clones that retain their haploid state.
Abstract: Near-haploid human cell lines are instrumental for genetic screens and genome engineering as gene inactivation is greatly facilitated by the absence of a second gene copy. However, no completely haploid human cell line has been described, hampering the genetic accessibility of a subset of genes. The near-haploid human cell line HAP1 contains a single copy of all chromosomes except for a heterozygous 30-megabase fragment of Chromosome 15. This large fragment encompasses 330 genes and is integrated on the long arm of Chromosome 19. Here, we employ a CRISPR/Cas9-based genome engineering strategy to excise this sizeable chromosomal fragment and to efficiently and reproducibly derive clones that retain their haploid state. Importantly, spectral karyotyping and single-nucleotide polymorphism (SNP) genotyping revealed that engineered-HAPloid (eHAP) cells are fully haploid with no gross chromosomal aberrations induced by Cas9. Furthermore, whole-genome sequence and transcriptome analysis of the parental HAP1 and an eHAP cell line showed that transcriptional changes are limited to the excised Chromosome 15 fragment. Together, we demonstrate the feasibility of efficiently engineering megabase deletions with the CRISPR/Cas9 technology and report the first fully haploid human cell line.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The CRISPR–Cas toolkit has been expanding to include single-base editing enzymes, targeting RNA and fusing inactive Cas proteins to effectors that regulate various nuclear processes, and the new advances are considerably improving the authors' understanding of biological processes and are propelling CRISpr–Cas-based tools towards clinical use in gene and cell therapies.
Abstract: The prokaryote-derived CRISPR-Cas genome editing systems have transformed our ability to manipulate, detect, image and annotate specific DNA and RNA sequences in living cells of diverse species. The ease of use and robustness of this technology have revolutionized genome editing for research ranging from fundamental science to translational medicine. Initial successes have inspired efforts to discover new systems for targeting and manipulating nucleic acids, including those from Cas9, Cas12, Cascade and Cas13 orthologues. Genome editing by CRISPR-Cas can utilize non-homologous end joining and homology-directed repair for DNA repair, as well as single-base editing enzymes. In addition to targeting DNA, CRISPR-Cas-based RNA-targeting tools are being developed for research, medicine and diagnostics. Nuclease-inactive and RNA-targeting Cas proteins have been fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions. Collectively, the new advances are considerably improving our understanding of biological processes and are propelling CRISPR-Cas-based tools towards clinical use in gene and cell therapies.

829 citations

Journal ArticleDOI
12 Sep 2018-Nature
TL;DR: Saturation genome editing is used to assay 96.5% of all possible single-nucleotide variants in 13 exons that encode functionally critical domains of BRCA1, and functional effects for nearly 4,000 SNVs are bimodally distributed and almost perfectly concordant with established assessments of pathogenicity.
Abstract: Variants of uncertain significance fundamentally limit the clinical utility of genetic information The challenge they pose is epitomized by BRCA1, a tumour suppressor gene in which germline loss-of-function variants predispose women to breast and ovarian cancer Although BRCA1 has been sequenced in millions of women, the risk associated with most newly observed variants cannot be definitively assigned Here we use saturation genome editing to assay 965% of all possible single-nucleotide variants (SNVs) in 13 exons that encode functionally critical domains of BRCA1 Functional effects for nearly 4,000 SNVs are bimodally distributed and almost perfectly concordant with established assessments of pathogenicity Over 400 non-functional missense SNVs are identified, as well as around 300 SNVs that disrupt expression We predict that these results will be immediately useful for the clinical interpretation of BRCA1 variants, and that this approach can be extended to overcome the challenge of variants of uncertain significance in additional clinically actionable genes

492 citations

Journal ArticleDOI
TL;DR: This proof of concept method uses sciHi-C data to separate cells by karyotypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation.
Abstract: Single-cell combinatorial indexed Hi-C (sciHi-C) is a streamlined protocol for generating thousands of high-quality single-cell chromosome conformation data sets that resemble bulk Hi-C data in aggregate. We present single-cell combinatorial indexed Hi-C (sciHi-C), a method that applies combinatorial cellular indexing to chromosome conformation capture. In this proof of concept, we generate and sequence six sciHi-C libraries comprising a total of 10,696 single cells. We use sciHi-C data to separate cells by karyotypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation. Our results demonstrate that combinatorial indexing is a generalizable strategy for single-cell genomics.

438 citations

Journal ArticleDOI
Rui Liu1, Ling Chen1, Yanping Jiang1, Zhihua Zhou1, Gen Zou1 
TL;DR: The results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.
Abstract: Filamentous fungi have wide applications in biotechnology. The CRISPR/Cas9 system is a powerful genome-editing method that facilitates genetic alterations of genomes in a variety of organisms. However, a genome-editing approach has not been reported in filamentous fungi. Here, we demonstrated the establishment of a CRISPR/Cas9 system in the filamentous fungus Trichoderma reesei by specific codon optimization and in vitro RNA transcription. It was shown that the CRISPR/Cas9 system was controllable and conditional through inducible Cas9 expression. This system generated site-specific mutations in target genes through efficient homologous recombination, even using short homology arms. This system also provided an applicable and promising approach to targeting multiple genes simultaneously. Our results illustrate that the CRISPR/Cas9 system is a powerful genome-manipulating tool for T. reesei and most likely for other filamentous fungal species, which may accelerate studies on functional genomics and strain improvement in these filamentous fungi.

359 citations

Journal ArticleDOI
TL;DR: The context dependency of aneuploidy in cancer is explained and its clinical potential is discussed, which may have clinical relevance as a prognostic marker and as a potential therapeutic target.
Abstract: Cancer is driven by multiple types of genetic alterations, which range in size from point mutations to whole-chromosome gains and losses, known as aneuploidy. Chromosome instability, the process that gives rise to aneuploidy, can promote tumorigenesis by increasing genetic heterogeneity and promoting tumour evolution. However, much less is known about how aneuploidy itself contributes to tumour formation and progression. Unlike some pan-cancer oncogenes and tumour suppressor genes that drive transformation in virtually all cell types and cellular contexts, aneuploidy is not a universal promoter of tumorigenesis. Instead, recent studies suggest that aneuploidy is a context-dependent, cancer-type-specific oncogenic event that may have clinical relevance as a prognostic marker and as a potential therapeutic target. Aneuploidy contributes to tumorigenesis, but the underlying processes are not well understood. This Review explains the context dependency of aneuploidy in cancer and discusses its clinical potential as a prognostic marker and a therapeutic target.

344 citations

References
More filters
Journal Article
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Abstract: Copyright (©) 1999–2012 R Foundation for Statistical Computing. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.

272,030 citations

Journal ArticleDOI
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

37,898 citations

Journal ArticleDOI
25 Aug 2006-Cell
TL;DR: Induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions is demonstrated and iPS cells, designated iPS, exhibit the morphology and growth properties of ES cells and express ES cell marker genes.

23,959 citations


"Megabase-scale deletion using CRISP..." refers background in this paper

  • ...KBM-7 cells can be reprogrammed to induced pluripotent stem cells by overexpression of POU5F1, SOX2, KLF4, and MYC (Takahashi and Yamanaka 2006; Carette et al. 2010)....

    [...]

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

Journal ArticleDOI
TL;DR: This protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results, which takes less than 1 d of computer time for typical experiments and ∼1 h of hands-on time.
Abstract: Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ∼1 h of hands-on time.

10,913 citations


"Megabase-scale deletion using CRISP..." refers methods in this paper

  • ...We aligned reads with TopHat (Trapnell et al. 2012) using GENCODE (V19) gene annotations (Harrow et al....

    [...]