scispace - formally typeset
Journal ArticleDOI

Melatonin systemically ameliorates drought stress‐induced damage in Medicago sativa plants by modulating nitro‐oxidative homeostasis and proline metabolism

Reads0
Chats0
TLDR
Novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro‐oxidative and osmoprotective homeostasis.
Abstract
Recent reports have uncovered the multifunctional role of melatonin in plant physiological responses under optimal and suboptimal environmental conditions. In this study, we explored whether melatonin pretreatment could provoke priming effects in alfalfa (Medicago sativa L.) plants subsequently exposed to prolonged drought stress (7 days), by withholding watering. Results revealed that the rhizospheric application of melatonin (10 μmol L-1 ) remarkably enhanced the drought tolerance of alfalfa plants, as evidenced by the observed plant tolerant phenotype, as well as by the higher levels of chlorophyll fluorescence and stomatal conductance, compared with nontreated drought-stressed plants. In addition, lower levels of lipid peroxidation (MDA content) as well as of both H2 O2 and NO contents in primed compared with nonprimed stressed plants suggest that melatonin pretreatment resulted in the systemic mitigation of drought-induced nitro-oxidative stress. Nitro-oxidative homeostasis was achieved by melatonin through the regulation of reactive oxygen (SOD, GR, CAT, APX) and nitrogen species (NR, NADHde) metabolic enzymes at the enzymatic and/or transcript level. Moreover, melatonin pretreatment resulted in the limitation of cellular redox disruption through the regulation of the mRNA levels of antioxidant and redox-related components (ADH, AOX, GST7, GST17), as well via osmoprotection through the regulation of proline homeostasis, at both the enzymatic (P5CS) and gene expression level (P5CS, P5CR). Overall, novel results highlight the importance of melatonin as a promising priming agent for the enhancement of plant tolerance to drought conditions through the regulation of nitro-oxidative and osmoprotective homeostasis.

read more

Citations
More filters
Journal ArticleDOI

Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator

TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Journal ArticleDOI

The Role of the Plant Antioxidant System in Drought Tolerance.

TL;DR: The meta-analysis of reported changes in transcript and protein amounts, and activities of components of the antioxidant and redox network support the tentative conclusion that drought tolerance is more tightly linked to up-regulated ascorbate-dependent antioxidant activity than to the response of the thiol-redox regulatory network.
Journal ArticleDOI

Plants facing oxidative challenges—A little help from the antioxidant networks

TL;DR: This review has concentrated on fresh new information and other promising and emerging topics of oxidative stress and antioxidant mechanisms in plants, giving particular attention to genotoxicity, transgenerational alterations and quantitative trait loci associated with enhancements in the plant tolerance to stresses.
Journal ArticleDOI

Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions.

TL;DR: Melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage, and in light of the “free radical theory of aging”, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline.
Journal ArticleDOI

Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions.

TL;DR: The present review discusses the L-proline accumulation, metabolism, signaling, transport and regulation in the plants, and discusses the effects of exogenous L-Proline during different environmental conditions.
References
More filters
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Book ChapterDOI

Catalase in vitro

Hugo Aebi
TL;DR: In this article, the catalytic activity of catalase has been investigated using ultraviolet (UV) spectrophotometry and Titrimetric methods, which is suitable for comparative studies for large series of measurements.
Journal ArticleDOI

Rapid determination of free proline for water-stress studies

TL;DR: In this article, a simple colorimetric determination of proline in the 0.1 to 36.0 μmoles/g range of fresh weight leaf material was presented.
Journal ArticleDOI

Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts

TL;DR: Observations confirm that the electron donor for the scavenging of hydrogen peroxide in chloroplasts is L-ascorbate and that the L-ASCorbate is regenerated from DHA by the system: photosystem I-*ferredoxin-*NADP^>glutathione and a preliminary characterization of the chloroplast peroxidase is given.
Journal ArticleDOI

Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR

TL;DR: Development and application of REST is explained, the usefulness of relative expression in real-time PCR using REST is discussed and the mathematical model used is based on the PCR efficiencies and the mean crossing point deviation between the sample and control group.
Related Papers (5)