scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate

11 May 2011-Applied Physics Letters (American Institute of Physics)-Vol. 98, Iss: 19, pp 193301
TL;DR: In this paper, the memory effects and the carrier transport mechanisms of write-once-read-many-times (WORM) memory devices fabricated using poly(3-hexylthiophene) (P3HT) molecules embedded in a polymethylmethacrylate (PMMA) polymer layer on a flexible substrate were investigated.
Abstract: The memory effects and the carrier transport mechanisms of write-once-read-many-times (WORM) memory devices fabricated using poly(3-hexylthiophene) (P3HT) molecules embedded in a polymethylmethacrylate (PMMA) polymer layer on a flexible substrate were investigated. Current-voltage (I-V) curves at 300 K for Al/P3HT:PMMA/indium-tin-oxide WORM device showed a permanent memory behavior with an ON/OFF ratio of 104. The estimated retention time of the ON state of the WORM device was more than 10 years. The carrier transport mechanisms of the WORM memory devices are described using several models to fit the experimental I-V data.
Citations
More filters
Journal ArticleDOI
TL;DR: The flash memories, resistive random access memories and ferroelectric random access memory/ferroelectric field-effect transistor memories (FeRAM/FeFET) are considered as promising candidates for next generation non-volatile memory device.
Abstract: Flexible non-volatile memories have attracted tremendous attentions for data storage for future electronics application. From device perspective, the advantages of flexible memory devices include thin, lightweight, printable, foldable and stretchable. The flash memories, resistive random access memories (RRAM) and ferroelectric random access memory/ferroelectric field-effect transistor memories (FeRAM/FeFET) are considered as promising candidates for next generation non-volatile memory device. Here, we review the general background knowledge on device structure, working principle, materials, challenges and recent progress with the emphasis on the flexibility of above three categories of non-volatile memories.

452 citations

Journal ArticleDOI
TL;DR: Yang-Fang Chen et al. as discussed by the authors presented a stretchable nonvolatile memory with a buckled structure, which was configured by a mechanically flexible and elastic graphene bottom electrode and polymer compound.
Abstract: A stretchable organic digital information storage device has been developed, which potentially advances the development of future smart and digital stretchable electronic systems. The stretchable organic memory with a buckled structure was configured by a mechanically flexible and elastic graphene bottom electrode and polymer compound. The current–voltage curve of the wrinkled memory device demonstrated electrical bistability with typical write-once-read-many times memory features and a high ON/OFF current ratio (∼105). Even under repetitive stretching, the stretchable organic memory exhibited excellent electrical switching functions and memory effects. We believe the first proof-of-concept presentation of the stretchable organic nonvolatile memory may accelerate the development of information storage device in various stretchable electronic applications, such as stretchable display, wearable computer and artificial skin. Stretchable and foldable electronic devices are very attractive, not only for their practicality but also for their potential in as-yet-undeveloped applications, such as artificial electronic skin. Now, Yang-Fang Chen from the National Taiwan University and co-workers have constructed a stretchable organic memory device. Although a variety of flexible organic electronic devices have already been built, which include transistors or solar cells, building stretchable memory devices has remained a challenge. This is because they typically contain a brittle metal electrode, and their fabrication also involves processes — such as spin coating — that are incompatible with flexible substrates. The researchers circumvented these issues by buckling both a graphene, rather than metallic, electrode and the active memory layers over a pre-stretched poly(dimethylsiloxane) elastomer. When the pre-strain was released, the materials adopted a wrinkled structure that endowed them with flexibility. The resulting device showed good electrical switching behavior and memory effects after several stretch/release cycles. A stretchable wrinkled organic memory has been successfully demonstrated. The stretchable organic memory with a graphene bottom electrode possesses rippled structures. The stretchable organic memory exhibits excellent electrical switching behaviors and memory effects even under repetitive stretching. It is believed that this stretchable organic memory may be beneficial for digital information storage in future stretchable electronic systems.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a self-assembled composite thin films of asymmetric poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) block copolymers (BCP) and fullerene derivatives (PCBM) were fabricated using self assembled composite thin film.
Abstract: Resistive switchable memory devices were fabricated using self-assembled composite thin films of asymmetric poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) block copolymers (BCP) and fullerene derivatives (PCBM). L1 (with a longer PS block) was comprised of discrete vertical P4VP nanocylinders embedded within the PS matrix whereas L2 (with a longer P4VP block) revealed a reverse morphology with a horizontal orientation. They were used to control the spatial location or distribution of the PCBM and the resultant memory characteristics. The devices with ITO/BCP:PCBM/Al configurations exhibited variable multi-electronic characteristics, changing from insulating to bistable memory switching and highly conducting, as the PCBM content increased. The L1:PCBM memory device showed non-volatile write-once-read-many-times (WORM) memory behavior but the L2:PCBM device exhibited a volatile nature of static random access memory (SRAM). Both L1 and L2:PCBM composite devices revealed the improved switching performance upon solvent annealing procedures of the composite thin film. Our results suggested that the controlled morphology of the BCP/PCBM composite could create nanoscale charge-storage elements for a high density memory device with a reduced bit cell size.

55 citations

Journal ArticleDOI
TL;DR: The results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.
Abstract: Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

45 citations

Journal ArticleDOI
TL;DR: Tunable memory performances of the developed PI/polycyclic aromatic compound blends are advantageous for future advanced memory device applications.
Abstract: Resistance switching memory devices with the configuration of poly(ethylene naphthalate)(PEN)/Al/polyimide (PI) blend/Al are reported. The active layers of the PI blend films were prepared from different compositions of poly[4,4′-diamino-4″-methyltriphenylamine-hexafluoroisopropylidenediphthalimide] (PI(AMTPA)) and polycyclic aromatic compounds (coronene or N,N-bis[4-(2-octyldodecyloxy)phenyl]-3,4,9,10-perylenetetracarboxylic diimide (PDI-DO)). The additives of large π-conjugated polycyclic compounds can stabilize the charge transfer complex induced by the applied electric field. Thus, the memory device characteristic changes from the volatile to nonvolatile behavior of flash and write-once-read-many times (WORM) as the additive contents increase in both blend systems. The main differences between these two blend systems are the threshold voltage values and the additive content to change the memory behavior. Due to the stronger accepting ability and higher electron affinity of PDI-DO than those of coronen...

44 citations

References
More filters
Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Abstract: Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix1. This has important consequences for electrical properties of these materials: charge transport is usually limited by the most difficult hopping processes and is therefore dominated by the disordered matrix, resulting in low charge-carrier mobilities2 (⩽10-5 cm2 V-1 s-1). Here we use thin-film, field-effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT. Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different orientations—parallel and normal to the substrate—the mobilities of which differ by more than a factor of 100, and can reach values as high as 0.1 cm2 V-1 s-1 (refs 3, 4). Optical spectroscopy of the field-induced charge, combined with the mobility anisotropy, reveals the two-dimensional interchain character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications of polymer transistors in logic circuits5 and active-matrix displays4,6.

4,306 citations

Journal ArticleDOI
TL;DR: Both the improved crystalline nature of films and increased but controlled demixing between the two constitutes therein after annealing explains the considerable increase of the power conversion efficiency observed in these devices.
Abstract: Transmission electron microscopy and electron diffraction are used to study the changes in morphology of composite films of poly(3-hexylthiophene) (P3HT) and a methanofullerene derivative (PCBM) in bulk heterojunction solar cells. Thermal annealing produces and stabilizes a nanoscale interpenetrating network with crystalline order for both components. P3HT forms long, thin conducting nanowires in a rather homogeneous, nanocrystalline PCBM film. Both the improved crystalline nature of films and increased but controlled demixing between the two constitutes therein after annealing explains the considerable increase of the power conversion efficiency observed in these devices.

1,552 citations

Journal ArticleDOI
J. C. Scott1, L. D. Bozano1
TL;DR: In this article, a review of the materials used in switching devices is presented, focusing particularly on the role of filamentary conduction and deliberately introduced or accidental nanoparticles, and the reported device parameters (on-off ratio, on-state current, switching time, retention time, cycling endurance, and rectification) are compared with those that would be necessary for a viable memory technology.
Abstract: Many organic electronic devices exhibit switching behavior, and have therefore been proposed as the basis for a nonvolatile memory (NVM) technology. This Review summarizes the materials that have been used in switching devices, and describes the variety of device behavior observed in their charge-voltage (capacitive) or current-voltage (resistive) response. A critical summary of the proposed charge-transport mechanisms for resistive switching is given, focusing particularly on the role of filamentary conduction and of deliberately introduced or accidental nanoparticles. The reported device parameters (on-off ratio, on-state current, switching time, retention time, cycling endurance, and rectification) are compared with those that would be necessary for a viable memory technology.

964 citations

Journal ArticleDOI

808 citations

Journal ArticleDOI
13 Nov 2003-Nature
TL;DR: The results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories.
Abstract: Organic devices promise to revolutionize the extent of, and access to, electronics by providing extremely inexpensive, lightweight and capable ubiquitous components that are printed onto plastic, glass or metal foils1,2,3. One key component of an electronic circuit that has thus far received surprisingly little attention is an organic electronic memory. Here we report an architecture for a write-once read-many-times (WORM) memory, based on the hybrid integration of an electrochromic polymer with a thin-film silicon diode deposited onto a flexible metal foil substrate. WORM memories are desirable for ultralow-cost permanent storage of digital images, eliminating the need for slow, bulky and expensive mechanical drives used in conventional magnetic and optical memories. Our results indicate that the hybrid organic/inorganic memory device is a reliable means for achieving rapid, large-scale archival data storage. The WORM memory pixel exploits a mechanism of current-controlled, thermally activated un-doping of a two-component electrochromic conducting polymer.

731 citations