scispace - formally typeset
Search or ask a question

MEMS Reliability Assurance Guidelines for Space Applications

01 Jan 1999-
TL;DR: In this paper, a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability is provided, including material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS.
Abstract: This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.
Citations
More filters
Journal ArticleDOI
B.B. Bauer1
01 Apr 1963

897 citations

Journal ArticleDOI
TL;DR: An overview of MEMS failure mechanisms that are commonly encountered is provided, focusing on the reliability issues of micro-scale devices, but, for some issues, the field of their macroscopic counterparts is also briefly touched.

300 citations


Cites methods from "MEMS Reliability Assurance Guidelin..."

  • ...In Table 1, an overview is given of the most common generic elements found in MEMS devices, most of them taken from the JPL/NASA MEMS reliability report [1]....

    [...]

Patent
14 Feb 2013
TL;DR: In this article, a transmitter and a scanner are coupled to generate an output indicative of a time of flight of the pulses to and from points in the scene, and a processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so that to generate a 3D map of a part of the scene that is within the selected window.
Abstract: Mapping apparatus includes a transmitter, which emits a beam comprising pulses of light, and a scanner, which is configured to scan the beam, within a predefined scan range, over a scene. A receiver receives the light reflected from the scene and to generate an output indicative of a time of flight of the pulses to and from points in the scene. A processor is coupled to control the scanner so as to cause the beam to scan over a selected window within the scan range and to process the output of the receiver so as to generate a 3D map of a part of the scene that is within the selected window.

175 citations

Journal ArticleDOI
TL;DR: The common failure mechanisms in MEMS, including mechanical fracture, fatigue, creep, stiction, wear, electrical short and open, contamination, their effects on devices' performance, inspection techniques, and approaches to mitigate those failures through structure optimization and material selection are reviewed.
Abstract: Microelectromechanical systems (MEMS) represents a technology that integrates miniaturized mechanical and electromechanical components (i.e., sensors and actuators) that are made using microfabrication techniques. MEMS devices have become an essential component in a wide range of applications, ranging from medical and military to consumer electronics. As MEMS technology is implemented in a growing range of areas, the reliability of MEMS devices is a concern. Understanding the failure mechanisms is a prerequisite for quantifying and improving the reliability of MEMS devices. This paper reviews the common failure mechanisms in MEMS, including mechanical fracture, fatigue, creep, stiction, wear, electrical short and open, contamination, their effects on devices' performance, inspection techniques, and approaches to mitigate those failures through structure optimization and material selection.

150 citations


Cites background from "MEMS Reliability Assurance Guidelin..."

  • ...have a catastrophic effect on a MEMS device [100]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of the use of polymers in implantable sensor packages, and identify future directions for their application, and assess the specific merits and drawbacks of several material-process combinations.
Abstract: Inexpensive, easy-to-process, light-weight polymer-based materials that are biocompatible, mechanically flexible, and optically transparent have emerged as alternatives to metals and ceramics in the packaging of implantable sensors. These materials have been used to package components such as microelectrode arrays, telemetric coils and structural membranes. Polymers are also being used for the encapsulations and coatings of the implants. The devices and packages require fine-pitch, low-loss, and highly-conductive paths on mechanically and chemically reliable polymer films. In this review, several polymers used for implantation and related integration technologies are identified. We give an overview of novel applications of polymers in implantable sensor packages, and identify future directions for their application. Polymers exhibit high moisture absorption rate, high-frequency electrical loss, and low mechanical stability. These properties are aggravated when polymers are used for in vivo applications. Also, the integration of polymers with polymers/metals at high bonding temperatures and pressures may degrade their properties and interfaces. Furthermore, adhesive bonding and physical/chemical deposition methods for the integration may introduce non-hermetic, permeable, optically opaque, and poorly conductive interfaces. Thus, creating polymer-based high-density and small-dimension structures are critical for packaging. To address these issues, polymers with improved characteristics as well as integration techniques using low bonding temperature and pressure are indispensable. Liquid crystal polymer (LCP) and surface activated bonding (SAB) technologies meet these requirements. SAB technologies enable nanoscaled polymer–polymer/metal bonding to realize reliable, miniaturized, and high-performance packages for implantable sensors. This article is meant to serve as a reference for future research in the emerging field of implantable sensors by critically assessing the specific merits and drawbacks of several material-process combinations.

140 citations

References
More filters
Book
01 Jan 1959
TL;DR: In this article, the authors describe the bending of long RECTANGULAR PLATES to a cycloidal surface, and the resulting deformation of shels without bending the plates.
Abstract: CONTENTS: BENDING OF LONG RECTANGULAR PLATES TO A CYLINDRICAL SURFACE PURE BENDING OF PLATES SYMMETRICAL BENDING OF CIRCULAR PLATES SMALL DEFLECTIONS OF LATERALLY LOADED PLATES SIMPLY SUPPORTED RECTANGULAR PLATES RECTANGULAR PLATES WITH VARIOUS EDGE CONDITIONS CONTINUOUS RECTANGULAR PLATES PLATES ON ELASTIC FOUNDATION PLATES OF VARIOUS SHAPES SPECIAL AND APPROXIMATE METHODS IN THEORY OF PLATES BENDING OF ANISTROPIC PLATES BENDING OF PLATES UNDER THE COMBINED ACTION OF LATERAL LOADS AND FORCES IN THE MIDDLE PLANE OF THE PLATE LARGE DEFLECTIONS OF PLATES DEFORMATION OF SHELLS WITHOUT BENDING GENERAL THEORY OF CYLINDRICAL SHELLS SHELLS HAVING THE FORM OF A SURFACE OF REVOLUTION AND LOADED SYMMETRICALLY WITH RESPECT TO THEIR AXIS.

10,200 citations

Book
01 Jan 1950
TL;DR: In this article, the authors present a two-dimensional wave equation and simple solutions for the wave equation with respect to the two dimensions of the wave and the two types of vibrations.
Abstract: Fundamentals of Vibration. Transverse Motion: The Vibrating String. Vibrations of Bars. The Two--Dimensional Wave Equation: Vibrations of Membranes and Plates. The Acoustic Wave Equation and Simple Solutions. Reflection and Transmission. Radiation and Reception of Acoustic Waves. Absorption and Attenuation of Sound. Cavities and Waveguides. Pipes, Resonators, and Filters. Noise, Signal Detection, Hearing, and Speech. Architectural Acoustics. Environmental Acoustics. Transduction. Underwater Acoustics. Selected Nonlinear Acoustic Effects. Shock Waves and Explosions. Appendices. Answers to Odd--Numbered Problems. Index.

4,047 citations

Book
20 Mar 1996
TL;DR: Montgomery and Runger's Engineering Statistics text as discussed by the authors provides a practical approach oriented to engineering as well as chemical and physical sciences by providing unique problem sets that reflect realistic situations, students learn how the material will be relevant in their careers.
Abstract: Montgomery and Runger's bestselling engineering statistics text provides a practical approach oriented to engineering as well as chemical and physical sciences. By providing unique problem sets that reflect realistic situations, students learn how the material will be relevant in their careers. With a focus on how statistical tools are integrated into the engineering problem-solving process, all major aspects of engineering statistics are covered. Developed with sponsorship from the National Science Foundation, this text incorporates many insights from the authors' teaching experience along with feedback from numerous adopters of previous editions.

3,915 citations

Journal ArticleDOI
01 May 1982
TL;DR: This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,723 citations


"MEMS Reliability Assurance Guidelin..." refers background in this paper

  • ...Studies[16] show that of the three wire bonds, the one with the raised die experiences the largest maximum displacement....

    [...]

Journal Article
TL;DR: In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,707 citations