scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Merger rate density of Population III binary black holes below, above, and in the pair-instability mass gap

TL;DR: In this article, the authors presented the merger rate density of Population (Pop.) III binary black holes (BHs) by means of a widely-used binary population synthesis code BSE with extensions to very massive and extreme metal-poor stars.
Abstract: We present the merger rate density of Population (Pop.) III binary black holes (BHs) by means of a widely-used binary population synthesis code BSE with extensions to very massive and extreme metal-poor stars. We consider not only low-mass BHs (lBHs: $5-50 M_\odot$) but also high-mass BHs (hBHs: $130-200 M_\odot$), where lBHs and hBHs are below and above the pair-instability mass gap ($50-130 M_\odot$), respectively. Pop. III BH-BHs can be categorized into three subpopulations: BH-BHs without hBHs (hBH0s: $m_{\rm tot} \lesssim 100 M_\odot$), with one hBH (hBH1s: $m_{\rm tot} \sim 130-260 M_\odot$), and with two hBHs (hBH2s: $m_{\rm tot} \sim 270-400 M_\odot$), where $m_{\rm tot}$ is the total mass of a BH-BH. Their merger rate densities at the current universe are $\sim 0.1$ yr$^{-1}$ Gpc$^{-3}$ for hBH0s, and $\sim 0.01$ yr$^{-1}$ Gpc$^{-3}$ for the sum of hBH1s and hBH2s, provided that the mass density of Pop. III stars is $\sim 10^{13} M_\odot$ Gpc$^{-3}$. These rates are modestly insensitive to initial conditions and single star models. The hBH1 and hBH2 mergers can dominate BH-BHs with hBHs discovered in near future. They have low effective spins $\lesssim 0.2$ in the current universe. The number ratio of the hBH2s to the hBH1s is high, $\gtrsim 0.1$. We also find BHs in the mass gap (up to $\sim 85 M_\odot$) merge. These merger rates can be reduced to nearly zero if Pop. III binaries are always wide ($\gtrsim 100 R_\odot$), and if Pop. III stars always enter into chemically homogeneous evolution. The presence of close Pop. III binaries ($\sim 10 R_\odot$) are crucial for avoiding the worst scenario.
Citations
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO-Virgo Gravitational-Wave Transient Catalog, GWTC-2.
Abstract: We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at $39.7^{+20.3}_{-9.1}\,M_\odot$, or a power law with a Gaussian feature peaking at $33.1^{+4.0}_{-5.6}\,M_\odot$ (90\% credible interval). While the primary mass distribution must extend to $\sim65\,M_\odot$ or beyond, only $2.9^{+3.5}_{1.7}\%$ of systems have primary masses greater than $45\,M_\odot$. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than $90^\circ$, giving rise to a negative effective inspiral spin parameter $\chi_\mathrm{eff}$. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing $|\chi_\mathrm{eff}| > 0.01$ are dynamically assembled. Third, we estimate merger rates, finding $\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}$ Gpc$^{-3}$ yr$^{-1}$ for BBH and $\mathcal{R}_\text{BNS}= 320^{+490}_{-240}$ Gpc$^{-3}$ yr$^{-1}$ for binary neutron stars. We find that the BBH rate likely increases with redshift ($85\%$ credibility), but not faster than the star-formation rate ($86\%$ credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the existence of the pair-instability mass gap in the mass spectrum of black holes and showed that the mass gap can be closed by the collapse of the residual H-rich envelope at metallicity 0.0003.
Abstract: Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between $\approx{}40-65$ M$_\odot$ and $\approx{}120$ M$_\odot$. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M$_{\odot}$. Here, we investigate the main uncertainties on the PI mass gap: the $^{12}$C($\alpha$, $\gamma$)$^{16}$O reaction rate and the H-rich envelope collapse. With the standard $^{12}$C($\alpha$, $\gamma$)$^{16}$O rate, the lower edge of the mass gap can be 70 M$_\odot$ if we allow for the collapse of the residual H-rich envelope at metallicity $Z\leq{}0.0003$. Adopting the uncertainties given by the STARLIB database, for models computed with the $^{12}$C($\alpha$, $\gamma$)$^{16}$O rate $-1\, \sigma$, we find that the PI mass gap ranges between $\approx{}80$ M$_\odot$ and $\approx{}150$ M$_\odot$. Stars with $M_{\rm ZAMS}>110$ M$_\odot$ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with $M_{\rm ZAMS} =160$ M$_\odot$ may avoid the PI and produce a BH of 150 M$_\odot$. In the $-2\,{}\sigma{}$ case, the PI mass gap ranges from 92 M$_\odot$ to 110 M$_\odot$. Finally, in models computed with $^{12}$C($\alpha$, $\gamma$)$^{16}$O $-3\,{}\sigma{}$, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low $^{12}$C($\alpha$, $\gamma$)$^{16}$O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.

91 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the redshift distribution of binary black hole (BBH), black hole - neutron star binary (BHNS) and binary neutron star (BNS) mergers, exploring the main sources of uncertainty: star formation rate (SFR) density, metallicity evolution, common envelope, mass transfer via Roche lobe overflow, natal kicks, core-collapse supernova model and initial mass function.
Abstract: We evaluate the redshift distribution of binary black hole (BBH), black hole - neutron star binary (BHNS) and binary neutron star (BNS) mergers, exploring the main sources of uncertainty: star formation rate (SFR) density, metallicity evolution, common envelope, mass transfer via Roche lobe overflow, natal kicks, core-collapse supernova model and initial mass function. Among binary evolution processes, uncertainties on common envelope ejection have a major impact: the local merger rate density of BNSs varies from $\sim{}10^3$ to $\sim{}20$ Gpc$^{-3}$ yr$^{-1}$ if we change the common envelope efficiency parameter from $\alpha_{\rm CE}=7$ to 0.5, while the local merger rates of BBHs and BHNSs vary by a factor of $\sim{}2-3$. The BBH merger rate changes by one order of magnitude, when $1 \sigma$ uncertainties on metallicity evolution are taken into account. In contrast, the BNS merger rate is almost insensitive to metallicity. Hence, BNSs are the ideal test bed to put constraints on uncertain binary evolution processes, such as common envelope and natal kicks. Only models assuming values of $\alpha_{\rm CE}\gtrsim{}2$ and moderately low natal kicks (depending on the ejected mass and the SN mechanism), result in a local BNS merger rate density within the 90% credible interval inferred from the second gravitational-wave transient catalogue.

89 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the evolution of X-ray binary systems is presented, showing that the system has remained within 200pc from the Galactic plane throughout its entire life time and that mass loss and a kick possibly associated with the black hole (BH) formation imparted a kick velocity of 45-115 km/s to the binary's center of mass.
Abstract: In recent years proper motion measurements have been added to the set of observational constraints on the current properties of Galactic X-ray binaries. We develop an analysis that allows us to consider all this available information and reconstruct the full evolutionary history of X-ray binaries back to the time of compact object formation. This analysis accounts for mass transfer through the ongoing X-ray phase, tidal circularization before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the compact object, and binary orbital dynamics and hydrodynamic modeling of the core collapse. We apply the analysis to the soft X-ray transient GRO J1655-40 and, for the first time, use its full 3D peculiar velocity constraints right after core collapse instead of lower limits on the current space velocity given by the present-day radial velocity. We find that the system has remained within 200pc from the Galactic plane throughout its entire life time and that the mass loss and a kick possibly associated with the black hole (BH) formation imparted a kick velocity of 45-115 km/s to the binary's center of mass. Right after BH formation, the system consists of a 3.5-6.3 Msun BH and a 2.3-4 Msun main-sequence star. At the onset of the X-ray phase the donor is still on the main sequence. We find that a symmetric BH formation event cannot be formally excluded, but that the associated system parameters are only marginally consistent with the currently observed binary properties. BH formation mechanisms involving an asymmetric supernova explosion with associated BH kick velocities of a few tens of km/s, on the other hand, satisfy the constraints much more comfortably. We also derive an upper limit on the BH kick magnitude of 210 km/s. (abridged)

80 citations

References
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1145 moreInstitutions (8)
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Abstract: We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

2,336 citations