scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Mesophyll conductance, photoprotective process and optimal N partitioning are essential to the maintenance of photosynthesis at N deficient condition in a wheat yellow-green mutant (Triticum aestivum L.)

01 Aug 2021-Journal of Plant Physiology (Urban & Fischer)-Vol. 263, pp 153469
TL;DR: In this article, a yellow-green wheat mutant and its wild type (Jimai5265, WT) were compared between 0mMN (N0) and 14mM N (N14) treatments using hydroponic experiments.
About: This article is published in Journal of Plant Physiology.The article was published on 2021-08-01. It has received 4 citations till now. The article focuses on the topics: Photoinhibition & Photosynthetic efficiency.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the maximum values of leaf morpho-physiological traits, photosynthetic rate, and photoynthetic N use efficiency were obtained in the N15-grown P. notoginseng.
Abstract: ABSTRACT Photosynthesis is susceptible in response to nitrogen (N) deficiency. However, the acclimation of shade-tolerant and high-N sensitive species to N deficiency is unclear. Leaf morpho-physiological traits, photosynthetic performance related parameters were examined in a shade-tolerant and high-N sensitive species P. notoginseng grown under different N levels. Lower N content and Chl content were recorded in the N0-grown P. notoginseng. The maximum values of leaf morpho-physiological traits, photosynthetic rate, and photosynthetic N use efficiency (PNUE) were obtained in the N15-grown P. notoginseng. Coefficients for leaf N allocation into the carboxylation and light-harvesting system components in the N0-grown plants were significantly higher than others. N0 and N7.5 plants showed higher K phase. N addition decreased the absorption and capture of the light energy per unit area (ABS/RC and TRO/RC) and non-photochemical quenching (NPQ). Photochemical quenching (qP), electron transport rate (ETR), and effective quantum yield of photosystem II (ϕPSII) were reduced in the N0-grown plants. The reduction of light-harvesting and utilization capacity not only leads to a decrease in PNUE, but also induces the damage of PSII reaction center. Overall, the inhibition of leaf growth and photosynthetic capacity is an essential strategy for high-N sensitive and shade-tolerant plants in response to N deficiency.

1 citations

Journal ArticleDOI
TL;DR: In this article , a field experiment was conducted to understand the relationship between photosynthetic properties and the grain yield, and the results indicated that the photoprotection mechanism of PSI independent of non-photochemical quenching (NPQ) was critical for crop productivity.
Abstract: Abbreviations : C c – CO 2 concentration inside the chloroplast; C i – intercellular CO 2 concentration; ETRI – electron transport rate of PSI; ETRII – electron transport rate of PSII; F 0 – minimum fluorescence; F 0 '– minimum fluorescence in the actinic light; F m – maximum fluorescence; F m ' – maximum fluorescence in the actinic light; F v /F m – maximum quantum efficiency of PSII photochemistry; g m – mesophyll conductance; g s – stomatal conductance; J a – alternative electron flux; J e(PCO) – electron flux to photorespiratory carbon oxidation; J e(PCR) – electron flux to photosynthetic carbon reduction; J max – light-saturated potential rate of electron transport; J t – electron transport rate; L b – limitation of biochemical capacity; L m – limitation of mesophyll diffusion; LMA – leaf mass per area; L s – limitation of stomatal diffusion; N area – nitrogen content per unit area; N mass – nitrogen content per unit mass; NO – nonregulated heat dissipation; NPQ – nonphotochemical quenching; P700 – primary electron donor of PSI; PIB – post-illumination burst; P m or P m ' – maximum P700 signal measured using saturation light pulse following short far-red pre-illumination in dark or light-adapted state; P N – net photosynthetic rate; PNUE – photosynthetic N-use efficiency; q P – PSII efficiency factor (the fraction of open centers); R d – mitochondrial CO 2 release in the dark; R L – light respiration rate; ROS – reactive oxygen species; V c,max – maximum carboxylation rate limited by Rubisco; Γ* – CO 2 -compensation point; Φ NA – oxidation status of PSI acceptor site; Φ ND – oxidation status of PSI donor site; Φ NO – quantum yield nonregulated heat dissipation; Φ NPQ – quantum yield of nonphotochemical quenching; Φ PSI – quantum yield of PSI photochemistry; Φ PSII – PSII operating efficiency (quantum yield of PSII photochemistry); Φ qP – quantum yield of open centers . Wheat yellow-green mutant Jimai5265yg has a more efficient photosynthetic system and higher productivity than its wild type under N-deficient conditions. To understand the relationship between photosynthetic properties and the grain yield, we conducted a field experiment under different N application levels. Compared to wild type, the Jimai5265yg flag leaves had higher mesophyll conductance, photosynthetic N-use efficiency, and photorespiration in the field without N application. Chlorophyll a fluorescence analysis showed that PSII was more sensitive to photoinhibition due to lower nonphotochemical quenching (NPQ) and higher nonregulated heat dissipation. In N-deficient condition, the PSI acceptor side of Jimai5265yg was less reduced. We proposed that the photoinhibited PSII protected PSI from over-reduction through downregulation of electron transport. PCA analysis also indicated that PSI photoprotection and electron transport regulation were closely associated with grain yield. Our results suggested that the photoprotection mechanism of PSI independent of NPQ was critical for crop productivity.
Journal ArticleDOI
TL;DR: The role of electron transport in PSI and PSI photoinhibition in Panax notoginseng was investigated in this article . But, the mechanism of N-stress-driven photo-inhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax noginsang, and thus the role of the electron transport mechanism in PSII and PSIsystem I photosynthesis needs to be further understood.
Abstract: Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (Pn) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (Fv/Fm), maximum photo-oxidation P700+ (Pm), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Journal ArticleDOI
TL;DR: In this article, the authors outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light-harvesting systems, which has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity.
Abstract: In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth-limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light-harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light-harvesting systems.
References
More filters
Journal ArticleDOI
01 Jun 1980-Planta
TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Abstract: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.

7,312 citations

Journal ArticleDOI
01 Jan 1992
TL;DR: The Xanthophyll cycle and thermal energy dissipation were investigated in this paper. But the results of these experiments were limited to the case of light-capturing systems, where active oxygen was not formed in the Photochemical Apparatus.
Abstract: PHOTO PROTECTION 604 Prevention oj Excessive Light Absorption... 604 Removal of Excess Excitation Energy Directly within the Light-Capturing System ......... ...... . . ..... ..... . .... . ..... ...... .... . .. . .. . . ..... . . . ... ... . 604 Removal oj Active Oxygen Formed in the Photochemical Apparatus ........ . . .. . . . . . . 605 INACTIV A TIONiTURNOVER OF PS II 606 THE XANTHOPHYLL CYCLE AND THERMAL ENERGY DISSIPATION: A PHOTOPROTECTIVE RESPONSE 608 Characteristics oj the Xanthophyll Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 608 Association Among the De-epoxidized State oj the Xanthophyll Cycle, Thermal Energy Dissipation. and Photoprotection .. .. . . . .. . . ...... .. .. ... ... 609 Operation of the Xanthophyll Cycle in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .... . . . .. . . . . 611 CONCLUSIONS 618

2,388 citations

Journal ArticleDOI
TL;DR: In this article, a system of models for the simulation of gas and energy exchange of a leaf of a C3 plant in free air is presented, where the physiological processes are simulated by sub-models that: (a) give net photosynthesis (An) as a function of environmental and leaf parameters and stomatal conductance (gs); (b) give g, as well as the concentration of CO2 and H2O in air at the leaf surface and the current rate of photosynthesis of the leaf.

2,030 citations

Journal ArticleDOI
TL;DR: A new parameter, qL, is introduced, based on a Stern–Volmer approach using a lake model, which estimates the fraction of open PS II centers and should be a useful parameter for terrestrial plants consistent with a high connectivity of PS II units, whereas some marine species with distinct antenna architecture may require the use of more complex parameters based on intermediate models of the photosynthetic unit.
Abstract: A number of useful photosynthetic parameters are commonly derived from saturation pulse-induced fluorescence analysis. We show, that qP, an estimate of the fraction of open centers, is based on a pure ‘puddle’ antenna model, where each Photosystem (PS) II center possesses its own independent antenna system. This parameter is incompatible with more realistic models of the photosynthetic unit, where reaction centers are connected by shared antenna, that is, the so-called ‘lake’ or ‘connected units’ models. We thus introduce a new parameter, qL, based on a Stern–Volmer approach using a lake model, which estimates the fraction of open PS II centers. We suggest that qL should be a useful parameter for terrestrial plants consistent with a high connectivity of PS II units, whereas some marine species with distinct antenna architecture, may require the use of more complex parameters based on intermediate models of the photosynthetic unit. Another useful parameter calculated from fluorescence analysis is ΦII, the yield of PS II. In contrast to qL, we show that the ΦII parameter can be derived from either a pure ‘lake’ or pure ‘puddle’ model, and is thus likely to be a robust parameter. The energy absorbed by PS II is divided between the fraction used in photochemistry, ΦII, and that lost non-photochemically. We introduce two additional parameters that can be used to estimate the flux of excitation energy into competing non-photochemical pathways, the yield induced by downregulatory processes, ΦNPQ, and the yield for other energy losses, ΦNO.

1,383 citations

Journal ArticleDOI
TL;DR: The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil.
Abstract: Crop productivity relies heavily on nitrogen (N) fertilization. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment; therefore, increasing plant N use efficiency (NUE) is essential for the development of sustainable agriculture. Plant NUE is inherently complex, as each step—including N uptake, translocation, assimilation, and remobilization—is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. Increasing both the grain and N harvest index to drive N acquisition and utilization are important approaches for breeding future high-NUE cultivars.

1,382 citations