scispace - formally typeset
Journal ArticleDOI

Mesoporous carbon nitrides: synthesis, functionalization, and applications

Reads0
Chats0
TLDR
This review article summarizes and highlights the existing literature covering every aspect of Mesoporous carbon nitrides including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results.
Abstract
Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches. One of the unique characteristics of these materials is that they exhibit both semiconducting and basic properties, which make them excellent platforms for the photoelectrochemical conversion and sensing of molecules such as CO2, and the selective sensing of toxic organic acids. The semiconducting features of these materials are finely controlled by varying the nitrogen content or local electronic structure of the MCNs. The incorporation of different functionalities including metal nanoparticles or organic molecules is further achieved in various ways to develop new electronic, semiconducting, catalytic, and energy harvesting materials. Dual functionalities including acidic and basic groups are also introduced in the wall structure of MCNs through simple UV-light irradiation, which offers enzyme-like properties in a single MCN system. In this review article, we summarize and highlight the existing literature covering every aspect of MCNs including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results. A special emphasis is given on the catalytic applications of MCNs including hydrogenation, oxidation, photocatalysis, and CO2 activation.

read more

Citations
More filters
Journal ArticleDOI

Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies

TL;DR: This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
Journal ArticleDOI

Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications

TL;DR: This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatOMs, and various surface functional groups that mostly dictate their place in a widerange of practical applications.
Journal ArticleDOI

Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more

TL;DR: This review summarizes and highlights a panorama of the latest advancements related to the design and construction of the molecular structure of CN, such as by doping and copolymerization, engineering of the polymerization degree, coordination interaction, covalent and noncovalent functionalization, and modulation of intralayer hydrogen bonding.
Journal ArticleDOI

Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation.

TL;DR: These findings not only propose a novel PMS activation mechanism in terms of simultaneous PMS oxidation and reduction for the production of nonradical and radical species but also provide a valuable insight for the development of efficient metal-free catalysts through nonmetal doping toward the persulfate-based environmental cleanup.
Journal ArticleDOI

Catalytic oxidation of carbohydrates into organic acids and furan chemicals

TL;DR: This review will highlight the recent research progress in the development of new routes for the production of organic acids and furan compounds via catalytic oxidation reactions with particular attention to one-pot reactions with the requirements of an acidic site and a metal site.
References
More filters
Journal ArticleDOI

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Journal ArticleDOI

Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Journal ArticleDOI

A new family of mesoporous molecular sieves prepared with liquid crystal templates

TL;DR: In this paper, the synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described.
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Titanium dioxide photocatalysis

TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this paper.
Related Papers (5)