scispace - formally typeset
Search or ask a question
Journal ArticleDOI

MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis.

TL;DR: The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions.
Abstract: We present a new update to MetaboAnalyst (version 4.0) for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since the last major update in 2015, MetaboAnalyst has continued to evolve based on user feedback and technological advancements in the field. For this year's update, four new key features have been added to MetaboAnalyst 4.0, including: (1) real-time R command tracking and display coupled with the release of a companion MetaboAnalystR package; (2) a MS Peaks to Pathways module for prediction of pathway activity from untargeted mass spectral data using the mummichog algorithm; (3) a Biomarker Meta-analysis module for robust biomarker identification through the combination of multiple metabolomic datasets and (4) a Network Explorer module for integrative analysis of metabolomics, metagenomics, and/or transcriptomics data. The user interface of MetaboAnalyst 4.0 has been reengineered to provide a more modern look and feel, as well as to give more space and flexibility to introduce new functions. The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB). A Docker image of MetaboAnalyst is also available to facilitate download and local installation of MetaboAnalyst. MetaboAnalyst 4.0 is freely available at http://metaboanalyst.ca.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors reported that CD44+CD24- cells are the most frequent cell type in inflammatory breast cancer and are commonly pSTAT3+ and that combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone.
Abstract: Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC.Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.

2 citations

Posted ContentDOI
02 Aug 2020-medRxiv
TL;DR: A panel of plasma and stool biomarkers could distinguish between NAFLD and NASH in a cohort of patients from Argentina and may be diagnostic in these patients and could be used to assess disease progression.
Abstract: Background and Aims: Non-invasive biomarkers are urgently needed to identify patients with non-alcoholic fatty liver disease (NAFLD) especially those at risk of disease progression. This is particularly true in high prevalence areas such as Latin America. The gut microbiome and intestinal permeability may play a role in the risk of developing NAFLD and NASH, but the mechanism by which microbiota composition disruption (or dysbiosis) may affect NAFLD progression is still unknown. Targeted metabolomics is a powerful technology for discovering new associations between gut microbiome-derived metabolites and disease. Thus, we aimed to identify potential metabolomic biomarkers related to the NAFLD stage in Argentina, and to assess their relationship with clinical and host genetic factors. Materials and methods: Adult healthy volunteers (HV) and biopsy-proven simple steatosis (SS) or non-alcoholic steatohepatitis (NASH) patients were recruited. Demographic, clinical and food frequency consumption data, as well as plasma and stool samples were collected. SNP rs738409 (PNPLA3 gene) was determined in all volunteers. HPLC and flow injection analysis with MS/MS in tandem was applied for metabolomic studies using the MxP Quant 500 Kit (Biocrates Life Sciences AG, Austria). Significantly different metabolites among groups were identified with MetaboAnalyst v4.0. Bivariate and multivariate analyses were used to identify variables that were independently related to NAFLD stage. Forward stepwise logistic regression models were constructed to design the best feature combination that could distinguish between study groups. Receiver Operating Characteristic (ROC) curves were used to evaluate models′ accuracy. Results: A total of 53 volunteers were recruited: 19 HV, 12 SS and 22 NASH. Diet was similar between groups. The concentration of 33 out of 424 detected metabolites (25 in plasma and 8 in stool) was significantly different among study groups. Levels of triglycerides (TG) were higher among NAFLD patients, whereas levels of phosphatidylcholines (PC) and lysoPC were depleted relative to HV. The PNPLA3 risk genotype for NAFLD and NASH (GG) was related to higher plasma levels of eicosenoic acid FA(20:1) (p<0.001). Plasma metabolites showed a higher accuracy for diagnosis of NAFLD and NASH when compared to stool metabolites. Body mass index (BMI) and plasma levels of PC aa C24:0, FA(20:1) and TG(16:1_34:1) showed high accuracy for diagnosis of NAFLD; whereas the best AUROC for discriminating NASH from SS was that of plasma levels of PC aa C24:0 and PC ae C40:1. Conclusion: A panel of plasma and stool biomarkers could distinguish between NAFLD and NASH in a cohort of patients from Argentina. Plasma biomarkers may be diagnostic in these patients and could be used to assess disease progression. Further validation studies including a larger number of patients are needed.

2 citations


Cites methods from "MetaboAnalyst 4.0: towards more tra..."

  • ...After signing an informed consent statement upon enrollment, each subject provided one stool sample and one fasting blood sample, underwent anthropometric measurements (height and weight) and completed a self-administered food frequency consumption questionnaire [19,20]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors performed exhaustive and robust extractions of metabolites in the amniotic fluid and lipids and more polar metabolites in placenta using C18 and hydrophilic interaction liquid chromatography combined with high-resolution mass spectrometry.
Abstract: Studying the metabolome of specific gestational compartments is of growing interest in the context of fetus developmental disorders. However, the metabolomes of the placenta and amniotic fluid (AF) are poorly characterized. Therefore, we present the validation of a fingerprinting methodology. Using pregnant rats, we performed exhaustive and robust extractions of metabolites in the AF and lipids and more polar metabolites in the placenta. For the AF, we compared the extraction capabilities of methanol (MeOH), acetonitrile (ACN), and a mixture of both. For the placenta, we compared (i) the extraction capabilities of dichloromethane, methyl t-butyl ether (MTBE), and butanol, along with (ii) the impact of lyophilization of the placental tissue. Analyses were performed on a C18 and hydrophilic interaction liquid chromatography combined with high-resolution mass spectrometry. The efficiency and the robustness of the extractions were compared based on the number of the features or metabolites (for untargeted or targeted approach, respectively), their mean total intensity, and their coefficient of variation (% CV). The extraction capabilities of MeOH and ACN on the AF metabolome were equivalent. Lyophilization also had no significant impact and usefulness on the placental tissue metabolome profiling. Considering the placental lipidome, MTBE extraction was more informative because it allowed extraction of a slightly higher number of lipids, in higher concentration. This proof-of-concept study assessing the metabolomics and lipidomics of the AF and the placenta revealed changes in both metabolisms, at two different stages of rat gestation, and allowed a detailed prenatal metabolic fingerprinting.

2 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow was performed on an Arctic char (Salvelinus alpinus) and the results showed that early life stages of Arctic char were more susceptible to variations in temperature.
Abstract: Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.

2 citations

Journal ArticleDOI
TL;DR: In this article , the applicability of the automated online profiling routine Bayesil to fish blood plasma and compare with the manual targeted metabolite profiling approach was evaluated with a 60-day feeding trial (0, 2.5, 5.0% glycerol supplemented diets).

2 citations

References
More filters
Journal ArticleDOI
TL;DR: The Gene Set Enrichment Analysis (GSEA) method as discussed by the authors focuses on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation.
Abstract: Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.

34,830 citations

Journal ArticleDOI
Minoru Kanehisa1, Miho Furumichi1, Mao Tanabe1, Yoko Sato2, Kanae Morishima1 
TL;DR: The content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases, and the newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined.
Abstract: KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an encyclopedia of genes and genomes. Assigning functional meanings to genes and genomes both at the molecular and higher levels is the primary objective of the KEGG database project. Molecular-level functions are stored in the KO (KEGG Orthology) database, where each KO is defined as a functional ortholog of genes and proteins. Higher-level functions are represented by networks of molecular interactions, reactions and relations in the forms of KEGG pathway maps, BRITE hierarchies and KEGG modules. In the past the KO database was developed for the purpose of defining nodes of molecular networks, but now the content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases. The newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined. Furthermore, the DISEASE and DRUG databases have been improved by systematic analysis of drug labels for better integration of diseases and drugs with the KEGG molecular networks. KEGG is moving towards becoming a comprehensive knowledge base for both functional interpretation and practical application of genomic information.

5,741 citations


"MetaboAnalyst 4.0: towards more tra..." refers background in this paper

  • ...For metabolites, MetaboAnalyst 4.0 currently accepts compound names, HMDB IDs or KEGG compound IDs as metabolite identifiers....

    [...]

  • ...The knowledgebase for this module consists of five genome-scale metabolic models obtained from the original Python implementation which have either been manually curated or downloaded from BioCyc, as well as an expanded library of 21 organisms derived from the KEGG metabolic pathways....

    [...]

  • ...For genes, Entrez IDs, ENSEMBL IDs, official gene symbols or KEGG orthologs are currently supported....

    [...]

  • ...On the network visualization page, users can use their mouse or touchpad to zoom in and out, highlight, drag and drop nodes (except the KEGG global metabolic network), or click on a node/edge for further details....

    [...]

  • ...The aim of this module is to provide users with an easy-to-use interface that permits the mapping of their metabolites and/or genes (including KEGG orthologs or KOs) onto different types of molecular interaction networks....

    [...]

Journal ArticleDOI
TL;DR: An overview of the PubChem Substance and Compound databases is provided, including data sources and contents, data organization, data submission using PubChem Upload, chemical structure standardization, web-based interfaces for textual and non-textual searches, and programmatic access.
Abstract: PubChem (https://pubchem.ncbi.nlm.nih.gov) is a public repository for information on chemical substances and their biological activities, launched in 2004 as a component of the Molecular Libraries Roadmap Initiatives of the US National Institutes of Health (NIH). For the past 11 years, PubChem has grown to a sizable system, serving as a chemical information resource for the scientific research community. PubChem consists of three inter-linked databases, Substance, Compound and BioAssay. The Substance database contains chemical information deposited by individual data contributors to PubChem, and the Compound database stores unique chemical structures extracted from the Substance database. Biological activity data of chemical substances tested in assay experiments are contained in the BioAssay database. This paper provides an overview of the PubChem Substance and Compound databases, including data sources and contents, data organization, data submission using PubChem Upload, chemical structure standardization, web-based interfaces for textual and non-textual searches, and programmatic access. It also gives a brief description of PubChem3D, a resource derived from theoretical three-dimensional structures of compounds in PubChem, as well as PubChemRDF, Resource Description Framework (RDF)-formatted PubChem data for data sharing, analysis and integration with information contained in other databases.

3,328 citations


"MetaboAnalyst 4.0: towards more tra..." refers background in this paper

  • ...MetaboAnalyst performs in-house mapping of common compound names to a wide variety of database identifiers including KEGG (20), HMDB (21), ChEBI (22), METLIN (23) and PubChem (24) prior to performing any functional analysis....

    [...]

Journal ArticleDOI
TL;DR: A new generation of a popular open-source data processing toolbox, MZmine 2 is introduced, suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.
Abstract: Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2. A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MSn data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms. MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/ . The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses.

2,884 citations


"MetaboAnalyst 4.0: towards more tra..." refers methods in this paper

  • ...A number of excellent methods have been developed to deal with the first two tasks (26,27), which typically yield a list of ‘clean’ MS peaks....

    [...]

Journal ArticleDOI
TL;DR: This year's update to the HMDB, HMDB 4.0, represents the most significant upgrade to the database in its history and should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.
Abstract: The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.

2,608 citations


"MetaboAnalyst 4.0: towards more tra..." refers background in this paper

  • ...For metabolites, MetaboAnalyst 4.0 currently accepts compound names, HMDB IDs or KEGG compound IDs as metabolite identifiers....

    [...]

  • ...The last four networks are created based on information gathered primarily from HMDB and STITCH databases (43), and are applicable to human studies only....

    [...]

  • ...This knowledgebase has been updated with HMDB Version 4.0, including updates of HMDB identifiers and links to other databases....

    [...]

  • ...The underlying knowledgebases (compound libraries, metabolite sets, and metabolic pathways) have also been updated based on the latest data from the Human Metabolome Database (HMDB)....

    [...]

  • ...MetaboAnalyst performs in-house mapping of common compound names to a wide variety of database identifiers including KEGG (20), HMDB (21), ChEBI (22), METLIN (23) and PubChem (24) prior to performing any functional analysis....

    [...]

Related Papers (5)