scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metabolic Effects of Intermittent Fasting.

21 Aug 2017-Annual Review of Nutrition (Annual Reviews)-Vol. 37, Iss: 1, pp 371-393
TL;DR: If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Abstract: The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms “intermittent fasting,” “fasting,” “time-restricted feeding,” and “food timing.” Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health ...
Citations
More filters
Journal ArticleDOI
TL;DR: It is argued that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing, and the use of new biomarkers capable of assessing biological versus chronological age in metabolic diseases is proposed.
Abstract: Ageing and age-related diseases share some basic mechanistic pillars that largely converge on inflammation. During ageing, chronic, sterile, low-grade inflammation - called inflammaging - develops, which contributes to the pathogenesis of age-related diseases. From an evolutionary perspective, a variety of stimuli sustain inflammaging, including pathogens (non-self), endogenous cell debris and misplaced molecules (self) and nutrients and gut microbiota (quasi-self). A limited number of receptors, whose degeneracy allows them to recognize many signals and to activate the innate immune responses, sense these stimuli. In this situation, metaflammation (the metabolic inflammation accompanying metabolic diseases) is thought to be the form of chronic inflammation that is driven by nutrient excess or overnutrition; metaflammation is characterized by the same mechanisms underpinning inflammaging. The gut microbiota has a central role in both metaflammation and inflammaging owing to its ability to release inflammatory products, contribute to circadian rhythms and crosstalk with other organs and systems. We argue that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing. Finally, we propose the use of new biomarkers (DNA methylation, glycomics, metabolomics and lipidomics) that are capable of assessing biological versus chronological age in metabolic diseases.

1,380 citations

01 Jan 2008
TL;DR: This work reviews the literature regarding short sleep duration as an independent risk factor for obesity and weight gain and suggests sleep deprivation may influence weight through effects on appetite, physical activity, and/or thermoregulation.
Abstract: Objective: The recent obesity epidemic has been accompanied by a parallel growth in chronic sleep deprivation. Physiologic studies suggest sleep deprivation may influence weight through effects on appetite, physical activity, and/or thermoregulation. This work reviews the literature regarding short sleep duration as an independent risk factor for obesity and weight gain.

1,172 citations

Journal ArticleDOI
TL;DR: It is demonstrated for the first time in humans that eTRF improves some aspects of cardiometabolic health and that IF's effects are not solely due to weight loss.

746 citations

Journal ArticleDOI
TL;DR: In this Review, Kolodziejczyk, Zheng and Elinav describe the latest advances in understanding diet–microbiota interactions, the individuality of gut microbiota composition and how this knowledge could be harnessed for personalized nutrition strategies to improve human health.
Abstract: Conceptual scientific and medical advances have led to a recent realization that there may be no single, one-size-fits-all diet and that differential human responses to dietary inputs may rather be driven by unique and quantifiable host and microbiome features. Integration of these person-specific host and microbiome readouts into actionable modules may complement traditional food measurement approaches in devising diets that are of benefit to the individual. Although many host-derived factors are hardwired and difficult to modulate, the microbiome may be more readily reshaped by environmental factors such as dietary exposures and is increasingly recognized to potentially impact human physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response and the synthesis or modulation of a plethora of potentially bioactive compounds. Thus, diet-induced microbiota alterations may be harnessed in order to induce changes in host physiology, including disease development and progression. However, major limitations in ‘big-data’ processing and analysis still limit our interpretive and translational capabilities concerning these person-specific host, microbiome and diet interactions. In this Review, we describe the latest advances in understanding diet–microbiota interactions, the individuality of gut microbiota composition and how this knowledge could be harnessed for personalized nutrition strategies to improve human health. In this Review, Kolodziejczyk, Zheng and Elinav describe the latest advances in understanding diet–microbiota interactions, the individuality of gut microbiota composition and how this knowledge could be harnessed for personalized nutrition strategies to improve human health.

453 citations

Journal ArticleDOI
TL;DR: Early time-restricted feeding (eTRF) as mentioned in this paper is a form of intermittent fasting that involves having a longer daily fasting period and has been shown to improve cardiometabolic health in rodents and humans.
Abstract: Time-restricted feeding (TRF) is a form of intermittent fasting that involves having a longer daily fasting period. Preliminary studies report that TRF improves cardiometabolic health in rodents and humans. Here, we performed the first study to determine how TRF affects gene expression, circulating hormones, and diurnal patterns in cardiometabolic risk factors in humans. Eleven overweight adults participated in a 4-day randomized crossover study where they ate between 8 am and 2 pm (early TRF (eTRF)) and between 8 am and 8 pm (control schedule). Participants underwent continuous glucose monitoring, and blood was drawn to assess cardiometabolic risk factors, hormones, and gene expression in whole blood cells. Relative to the control schedule, eTRF decreased mean 24-hour glucose levels by 4 ± 1 mg/dl (p = 0.0003) and glycemic excursions by 12 ± 3 mg/dl (p = 0.001). In the morning before breakfast, eTRF increased ketones, cholesterol, and the expression of the stress response and aging gene SIRT1 and the autophagy gene LC3A (all p < 0.04), while in the evening, it tended to increase brain-derived neurotropic factor (BNDF; p = 0.10) and also increased the expression of MTOR (p = 0.007), a major nutrient-sensing protein that regulates cell growth. eTRF also altered the diurnal patterns in cortisol and the expression of several circadian clock genes (p < 0.05). eTRF improves 24-hour glucose levels, alters lipid metabolism and circadian clock gene expression, and may also increase autophagy and have anti-aging effects in humans.

309 citations

References
More filters
Journal ArticleDOI
21 Dec 2006-Nature
TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Abstract: The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.

10,126 citations

Journal ArticleDOI
06 Sep 2013-Science
TL;DR: The results reveal that transmissible and modifiable interactions between diet and microbiota influence host biology and that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids.
Abstract: How much does the microbiota influence the host's phenotype? Ridaura et al. ([1241214][1] ; see the Perspective by [ Walker and Parkhill ][2]) obtained uncultured fecal microbiota from twin pairs discordant for body mass and transplanted them into adult germ-free mice. It was discovered that adiposity is transmissible from human to mouse and that it was associated with changes in serum levels of branched-chain amino acids. Moreover, obese-phenotype mice were invaded by members of the Bacteroidales from the lean mice, but, happily, the lean animals resisted invasion by the obese microbiota. [1]: http://www.sciencemag.org/content/341/6150/1241214.full [2]: /lookup/doi/10.1126/science.1243787

2,929 citations

Journal ArticleDOI
TL;DR: The findings demonstrate the adverse cardiometabolic implications of circadian misalignment, as occurs acutely with jet lag and chronically with shift work, on metabolic, autonomic, and endocrine predictors of obesity, diabetes, and cardiovascular risk.
Abstract: Effects of Behavioral Cycle. The effects of the behavioral cycle, independent of the circadian cycle, on leptin, glucose, insulin, epinephrine, norepinephrine, and cortisol are shown in Fig. 2, Left panels. Leptin varied significantly across the behavioral cycle, with a trough around breakfast and a peak after the last meal, coinciding with the onset of the scheduled sleep episode (P 0.001, peak-to-trough 44%). Also, both glucose and insulin varied significantly across the behavioral cycle (glucose: P 0.001, peak-to-trough 26%; insulin: P 0.001, peak-to-trough 158%), presumably the result of the timing of meals. Both epinephrine and norepinephrine varied significantly across the behavioral cycle with peaks during the wake episode and troughs during the sleep episode (epinephrine: P 0.001, peak-totrough 83%; norepinephrine: P 0.001, peak-to-trough 72%). Cortisol varied significantly across the behavioral cycle, peaking after awakening and with a trough at the onset of the scheduled sleep episode (P 0.001, peak-to-trough 38%). Effect of Circadian Cycle. The effects of the circadian cycle, independent of the behavioral cycle, on leptin, glucose, insulin, epinephrine, norepinephrine, and cortisol, are shown in Fig. 2, Right panels. Glucose had a significant endogenous circadian rhythm (P 0.018, peak-to-trough 4%), with a peak during the biological night (circadian bin 300° and 0°; equivalent to22:30– 06:30 in these subjects). Epinephrine exhibited a significant endogenous circadian rhythm (P 0.001, peak-to-trough 53%), with a peak during the biological day (circadian bin 180°; equivalent to 14:30–18:30). Cortisol had a significant endogenous circadian rhythm (P 0.001, peak-to-trough 113%), with a peak at the end of the biological night (60°; close to habitual wake time). There were no significant circadian rhythms in leptin, insulin, or norepinephrine.

1,850 citations

Journal ArticleDOI
03 Dec 2010-Science
TL;DR: Advances in understanding the interrelationship among circadian disruption, sleep deprivation, obesity, and diabetes are reviewed and implications for rational therapeutics for these conditions are reviewed.
Abstract: Circadian clocks align behavioral and biochemical processes with the day/night cycle. Nearly all vertebrate cells possess self-sustained clocks that couple endogenous rhythms with changes in cellular environment. Genetic disruption of clock genes in mice perturbs metabolic functions of specific tissues at distinct phases of the sleep/wake cycle. Circadian desynchrony, a characteristic of shift work and sleep disruption in humans, also leads to metabolic pathologies. Here, we review advances in understanding the interrelationship among circadian disruption, sleep deprivation, obesity, and diabetes and implications for rational therapeutics for these conditions.

1,538 citations

Journal ArticleDOI
TL;DR: Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination.

1,442 citations

Related Papers (5)