scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metabolic Interactions in the Tumor Microenvironment

01 Nov 2017-Trends in Cell Biology (NIH Public Access)-Vol. 27, Iss: 11, pp 863-875
TL;DR: The focus of this review is on the remodeling of the tumor microenvironment that leads to pathophysiologic interactions that are influenced and shaped by metabolism.
About: This article is published in Trends in Cell Biology.The article was published on 2017-11-01 and is currently open access. It has received 552 citations till now. The article focuses on the topics: Tumor microenvironment.
Citations
More filters
Journal ArticleDOI
05 Apr 2018-Cell
TL;DR: Novel stemness indices for assessing the degree of oncogenic dedifferentiation are provided and it is found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors.

1,099 citations


Cites background from "Metabolic Interactions in the Tumor..."

  • ...Themicroenvironment of a tumor, considered as a pathologically formed ‘‘organ,’’ is frequently characterized by hypoxia, as well as by abnormal levels of various cytokines, growth factors, and metabolites (Lyssiotis and Kimmelman, 2017)....

    [...]

Journal ArticleDOI
TL;DR: This Review discusses how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management.
Abstract: Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.

786 citations

Journal ArticleDOI
TL;DR: Early in tumor growth, a dynamic and reciprocal relationship develops between cancer cells and components of the tumor microenvironment that supports cancer cell survival, local invasion and metastatic dissemination.

599 citations

01 Mar 2014
TL;DR: A continuous-flow culture apparatus for maintaining proliferating cells in low-nutrient media for long periods of time is developed and used to undertake competitive proliferation assays, concluding that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Abstract: As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.

493 citations

Journal ArticleDOI
TL;DR: The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion.
Abstract: Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as "Warburg effect or aerobic glycolysis." As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.

430 citations


Cites background from "Metabolic Interactions in the Tumor..."

  • ...The high utilization of glucose by cancer cells results in the accumulation of extracellular lactate affecting a number of cell types within the tumor microenvironment (TME), composed by a variety of different cell types such as endothelial cells, cancerassociated fibroblasts (CAFs), immune cells and non-cancer stroma cells (20)....

    [...]

  • ...TME consist of malignant cancer cells, endothelial cells, cancer associated fibroblasts (CAFs), immune cells and non-cancer cell stroma conformed by numerous peptide factors (growth factors, chemokines, cytokines and antibodies) (20)....

    [...]

References
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
07 Jan 2005-Science
TL;DR: Emerging evidence supporting an alternative hypothesis is reviewed—that certain antiangiogenic agents can also transiently “normalize” the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery.
Abstract: Solid tumors require blood vessels for growth, and many new cancer therapies are directed against the tumor vasculature. The widely held view is that these antiangiogenic therapies should destroy the tumor vasculature, thereby depriving the tumor of oxygen and nutrients. Here, I review emerging evidence supporting an alternative hypothesis-that certain antiangiogenic agents can also transiently "normalize" the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery. Drugs that induce vascular normalization can alleviate hypoxia and increase the efficacy of conventional therapies if both are carefully scheduled. A better understanding of the molecular and cellular underpinnings of vascular normalization may ultimately lead to more effective therapies not only for cancer but also for diseases with abnormal vasculature, as well as regenerative medicine, in which the goal is to create and maintain a functionally normal vasculature.

4,952 citations

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.
Abstract: Blood vessels deliver oxygen and nutrients to every part of the body, but also nourish diseases such as cancer. Over the past decade, our understanding of the molecular mechanisms of angiogenesis (blood vessel growth) has increased at an explosive rate and has led to the approval of anti-angiogenic drugs for cancer and eye diseases. So far, hundreds of thousands of patients have benefited from blockers of the angiogenic protein vascular endothelial growth factor, but limited efficacy and resistance remain outstanding problems. Recent preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.

4,441 citations

Journal ArticleDOI
TL;DR: This Perspective has organized known cancer-associated metabolic changes into six hallmarks: deregulated uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, useof glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the microenvironment.

3,565 citations

Journal ArticleDOI
TL;DR: This work considers myeloid cells as an intricately connected, complex, single system and focuses on how tumours manipulate the myeloids system to evade the host immune response.
Abstract: Here, the authors discuss how the immune activities of myeloid cells, such as macrophages and dendritic cells, are affected by the immunosuppressive tumour environment. They propose that tumours can evade the immune system by promoting aberrant differentiation and function of the entire myeloid system.

2,966 citations