scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metabolic remodelling in heart failure

01 Aug 2018-Nature Reviews Cardiology (Nat Rev Cardiol)-Vol. 15, Iss: 8, pp 457-470
TL;DR: It is suggested that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions.
Abstract: The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Citations
More filters
01 Jan 2004
TL;DR: It is demonstrated that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggested that PKc-η is a potential therapeutic target for the treatment of type 2 diabetes.
Abstract: Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C–θ (PKC-θ), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-θ are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-θ KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40–50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate–1 (IRS-1) and IRS-1–associated PI3K activity. In contrast, PKC-θ inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-θ is a potential therapeutic target for the treatment of type 2 diabetes.

423 citations

Journal ArticleDOI
TL;DR: It is proposed that obesity and hypertension induce M1 macrophages polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia.
Abstract: Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While ma...

189 citations

Journal ArticleDOI
TL;DR: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation as discussed by the authors.
Abstract: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby improving insulin sensitivity and glucose metabolism. PPARs also exert anti-atherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates improve insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.

166 citations

Journal ArticleDOI
TL;DR: Cardiac ATP production primarily depends on oxidative phosphorylation in mitochondria and is dynamically regulated by Ca2+ levels in the mitochondrial matrix as well as by cytosolic ADP.

103 citations

References
More filters
Journal ArticleDOI
TL;DR: In this review the usual methods applied in systematic reviews and meta-analyses are outlined, and the most common procedures for combining studies with binary outcomes are described, illustrating how they can be done using Stata commands.

31,656 citations

Journal ArticleDOI
TL;DR: Authors/Task Force Members: Piotr Ponikowski* (Chairperson) (Poland), Adriaan A. Voors* (Co-Chair person) (The Netherlands), Stefan D. Anker (Germany), Héctor Bueno (Spain), John G. F. Cleland (UK), Andrew J. S. Coats (UK)

13,400 citations

Journal ArticleDOI
TL;DR: Patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as compared with placebo, had a lower rate of the primary composite cardiovascular outcome and of death from any cause when the study drug was added to standard care.
Abstract: BACKGROUND The effects of empagliflozin, an inhibitor of sodium–glucose cotransporter 2, in addition to standard care, on cardiovascular morbidity and mortality in patients with type 2 diabetes at high cardiovascular risk are not known. METHODS We randomly assigned patients to receive 10 mg or 25 mg of empagliflozin or placebo once daily. The primary composite outcome was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke, as analyzed in the pooled empagliflozin group versus the placebo group. The key secondary composite outcome was the primary outcome plus hospitalization for unstable angina. RESULTS A total of 7020 patients were treated (median observation time, 3.1 years). The primary outcome occurred in 490 of 4687 patients (10.5%) in the pooled empagliflozin group and in 282 of 2333 patients (12.1%) in the placebo group (hazard ratio in the empagliflozin group, 0.86; 95.02% confidence interval, 0.74 to 0.99; P = 0.04 for superiority). There were no significant between-group differences in the rates of myocardial infarction or stroke, but in the empagliflozin group there were significantly lower rates of death from cardiovascular causes (3.7%, vs. 5.9% in the placebo group; 38% relative risk reduction), hospitalization for heart failure (2.7% and 4.1%, respectively; 35% relative risk reduction), and death from any cause (5.7% and 8.3%, respectively; 32% relative risk reduction). There was no significant between-group difference in the key secondary outcome (P = 0.08 for superiority). Among patients receiving empagliflozin, there was an increased rate of genital infection but no increase in other adverse events. CONCLUSIONS Patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as compared with placebo, had a lower rate of the primary composite cardiovascular outcome and of death from any cause when the study drug was added to standard care. (Funded by Boehringer Ingelheim and Eli Lilly; EMPA-REG OUTCOME ClinicalTrials.gov number, NCT01131676.)

7,705 citations

Journal ArticleDOI
15 May 2009-Science
TL;DR: It is shown here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro.
Abstract: DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference–mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.

5,155 citations

Related Papers (5)
Trending Questions (1)
How energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies?

The paper does not specifically address how energy metabolism is altered in cardiac hypertrophy and heart failure of different etiologies. The paper provides an overview of physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus.