scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation.

TL;DR: It is reported that TGF-β1- or PDGF-induced CAFs switch from oxidative phosphorylation to aerobic glycolysis, and downregulation of isocitrate dehydrogenase 3α (IDH3α) is identified as a marker for this switch.
About: This article is published in Cell Reports.The article was published on 2015-03-03 and is currently open access. It has received 249 citations till now. The article focuses on the topics: Anaerobic glycolysis & Oxidative phosphorylation.
Citations
More filters
Journal ArticleDOI
TL;DR: Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components and have a role in creating extracellular matrix structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy.
Abstract: Cancer is associated with fibroblasts at all stages of disease progression. This Review discusses the pleiotropic actions of cancer-associated fibroblasts (CAFs) on tumour cells and postulates that they are likely to be a heterogeneous and plastic population of cells in the tumour microenvironment. Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.

2,597 citations

Journal ArticleDOI
TL;DR: How cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression is discussed; in particular, potential metabolic vulnerabilities that might be targeted therapeutically are highlighted.
Abstract: Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.

982 citations

Journal ArticleDOI
24 Jan 2018
TL;DR: The most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment are reviewed, and their role in cancer development and progression is summarised.
Abstract: Cancer progression often benefits from the selective conditions present in the tumour microenvironment, such as the presence of cancer-associated fibroblasts (CAFs), deregulated ECM deposition, expanded vascularisation and repression of the immune response. Generation of a hypoxic environment and activation of its main effector, hypoxia-inducible factor-1 (HIF-1), are common features of advanced cancers. In addition to the impact on tumour cell biology, the influence that hypoxia exerts on the surrounding cells represents a critical step in the tumorigenic process. Hypoxia indeed enables a number of events in the tumour microenvironment that lead to the expansion of aggressive clones from heterogeneous tumour cells and promote a lethal phenotype. In this article, we review the most relevant findings describing the influence of hypoxia and the contribution of HIF activation on the major components of the tumour microenvironment, and we summarise their role in cancer development and progression.

648 citations

Journal ArticleDOI
TL;DR: The focus of this review is on the remodeling of the tumor microenvironment that leads to pathophysiologic interactions that are influenced and shaped by metabolism.

552 citations

References
More filters
Journal ArticleDOI
Jian-Hua Yang1, Jun-Hao Li1, Peng Shao1, Hui Zhou1, Yue-Qin Chen1, Liang-Hu Qu1 
TL;DR: A novel database, starBase (sRNA target Base), is introduced, which is developed to facilitate the comprehensive exploration of miRNA–target interaction maps from CLIP-Seq and Degradome-Sequ data.
Abstract: MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleavage sites, respectively. In this study, we introduce a novel database, starBase (sRNA target Base), which we have developed to facilitate the comprehensive exploration of miRNA–target interaction maps from CLIP-Seq and Degradome-Seq data. The current version includes high-throughput sequencing data generated from 21 CLIP-Seq and 10 DegradomeSeq experiments from six organisms. By analyzing millions of mapped CLIP-Seq and Degradome-Seq reads, we identified � 1 million Ago-binding clusters and � 2 million cleaved target clusters in animals and plants, respectively. Analyses of these clusters, and of target sites predicted by 6 miRNA target prediction programs, resulted in our identification of approximately 400 000 and approximately 66 000 miRNA-target regulatory relationships from CLIP-Seq and Degradome-Seq data, respectively. Furthermore, two web servers were provided to discover novel miRNA target sites from CLIP-Seq and Degradome-Seq data. Our web implementation supports diverse query types and exploration of common targets, gene ontologies and pathways. The starBase is available at http://starbase.sysu .edu.cn/.

722 citations

Journal ArticleDOI
TL;DR: It is concluded that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect" and may explain why diabetic patients have an increased incidence of cancer.
Abstract: Previously, we proposed a new model for understanding the "Warburg effect" in tumor metabolism. In this scheme, cancer-associated fibroblasts undergo aerobic glycolysis and the resulting energy-rich metabolites are then transferred to epithelial cancer cells, where they enter the TCA cycle, resulting in high ATP production via oxidative phosphorylation. We have termed this new paradigm "The Reverse Warburg Effect." Here, we directly evaluate whether the end-products of aerobic glycolysis (3-hydroxy-butyrate and L-lactate) can stimulate tumor growth and metastasis, using MDA-MB-231 breast cancer xenografts as a model system. More specifically, we show that administration of 3-hydroxy-butyrate (a ketone body) increases tumor growth by ∼2.5-fold, without any measurable increases in tumor vascularization/angiogenesis. Both 3-hydroxy-butyrate and L-lactate functioned as chemo-attractants, stimulating the migration of epithelial cancer cells. Although L-lactate did not increase primary tumor growth, it stimulated the formation of lung metastases by ∼10-fold. Thus, we conclude that ketones and lactate fuel tumor growth and metastasis, providing functional evidence to support the "Reverse Warburg Effect". Moreover, we discuss the possibility that it may be unwise to use lactate-containing i.v. solutions (such as Lactated Ringer's or Hartmann's solution) in cancer patients, given the dramatic metastasis-promoting properties of L-lactate. Also, we provide evidence for the up-regulation of oxidative mitochondrial metabolism and the TCA cycle in human breast cancer cells in vivo, via an informatics analysis of the existing raw transcriptional profiles of epithelial breast cancer cells and adjacent stromal cells. Lastly, our findings may explain why diabetic patients have an increased incidence of cancer, due to increased ketone production, and a tendency towards autophagy/mitophagy in their adipose tissue.

503 citations


"Metabolic reprogramming of cancer-a..." refers background in this paper

  • ...In addition, b-hydroxybutyrate, one of the ketone bodies, increased cancer cell proliferation approximately 3-fold compared to the control group, and lactate promoted angiogenesis in tumor model (Bonuccelli et al., 2010a; Fiaschi et al., 2012)....

    [...]

  • ...Moreover, CAV1, a potential marker of CAFs in human breast cancers and associated with tumor recurrence, metastasis, and poor clinical outcome (Bonuccelli et al., 2010a; Sotgia et al., 2009), was downregulated in CAFs, whether induced or isolated, suggesting that CAV1 downregulation is a…...

    [...]

Journal ArticleDOI

454 citations


"Metabolic reprogramming of cancer-a..." refers background in this paper

  • ...Through specific communications with cancer cells, CAFs directly promote tumor initiation (Bhowmick et al., 2004; Olumi et al., 1999), progression (Dimanche-Boitrel et al....

    [...]

  • ...Through specific communications with cancer cells, CAFs directly promote tumor initiation (Bhowmick et al., 2004; Olumi et al., 1999), progression (Dimanche-Boitrel et al., 1994; Orimo et al., 2005), and metastasis (Grum-Schwensen et al., 2005; Olaso et al., 1997)....

    [...]

Journal ArticleDOI
TL;DR: The reciprocal interplay between CAFs and prostate cancer cells goes beyond the engagement of EMT to include mutual metabolic reprogramming, and cancer cells allocate Warburg metabolism to their corrupted CAFs, exploiting their byproducts to grow in a low glucose environment, symbiotically adapting with stromal cells to glucose availability.
Abstract: Cancer-associated fibroblasts (CAF) engage in tumor progression by promoting the ability of cancer cells to undergo epithelial-mesenchymal transition (EMT), and also by enhancing stem cells traits and metastatic dissemination. Here we show that the reciprocal interplay between CAFs and prostate cancer cells goes beyond the engagement of EMT to include mutual metabolic reprogramming. Gene expression analysis of CAFs cultured ex vivo or human prostate fibroblasts obtained from benign prostate hyperplasia revealed that CAFs undergo Warburg metabolism and mitochondrial oxidative stress. This metabolic reprogramming toward a Warburg phenotype occurred as a result of contact with prostate cancer cells. Intercellular contact activated the stromal fibroblasts, triggering increased expression of glucose transporter GLUT1, lactate production, and extrusion of lactate by de novo expressed monocarboxylate transporter-4 (MCT4). Conversely, prostate cancer cells, upon contact with CAFs, were reprogrammed toward aerobic metabolism, with a decrease in GLUT1 expression and an increase in lactate upload via the lactate transporter MCT1. Metabolic reprogramming of both stromal and cancer cells was under strict control of the hypoxia-inducible factor 1 (HIF1), which drove redox- and SIRT3-dependent stabilization of HIF1 in normoxic conditions. Prostate cancer cells gradually became independent of glucose consumption, while developing a dependence on lactate upload to drive anabolic pathways and thereby cell growth. In agreement, pharmacologic inhibition of MCT1-mediated lactate upload dramatically affected prostate cancer cell survival and tumor outgrowth. Hence, cancer cells allocate Warburg metabolism to their corrupted CAFs, exploiting their byproducts to grow in a low glucose environment, symbiotically adapting with stromal cells to glucose availability.

425 citations


"Metabolic reprogramming of cancer-a..." refers background in this paper

  • ...Hypoxia has been implicated in the metabolic reprogramming of cancer cells, and HIF-1a plays an important role in the regulation of glycolysis (Denko, 2008; Fiaschi et al., 2012; Mimura et al., 2012; Sonveaux et al., 2008)....

    [...]

  • ...In addition, b-hydroxybutyrate, one of the ketone bodies, increased cancer cell proliferation approximately 3-fold compared to the control group, and lactate promoted angiogenesis in tumor model (Bonuccelli et al., 2010a; Fiaschi et al., 2012)....

    [...]

  • ...Previous studies have shown that CAFs secrete large amounts of lactate and ketone bodies, utilized by tumor cells for anabolic metabolism or oxidative phosphorylation (Fiaschi et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors applied both high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) and gas chromatography mass spectrometry (GC/MS) to analyze metabolites in biopsied colorectal tumors and their matched normal mucosae obtained from 31 CRC patients.
Abstract: Current clinical strategy for staging and prognostication of colorectal cancer (CRC) relies mainly upon the TNM or Duke system. This clinicopathological stage is a crude prognostic guide because it reflects in part the delay in diagnosis in the case of an advanced cancer and gives little insight into the biological characteristics of the tumor. We hypothesized that global metabolic profiling (metabonomics/metabolomics) of colon mucosae would define metabolic signatures that not only discriminate malignant from normal mucosae, but also could distinguish the anatomical and clinicopathological characteristics of CRC. We applied both high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) and gas chromatography mass spectrometry (GC/MS) to analyze metabolites in biopsied colorectal tumors and their matched normal mucosae obtained from 31 CRC patients. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models generated from metabolic profiles obtained by both analytical approaches could robustly discriminate normal from malignant samples (Q(2) > 0.50, Receiver Operator Characteristic (ROC) AUC >0.95, using 7-fold cross validation). A total of 31 marker metabolites were identified using the two analytical platforms. The majority of these metabolites were associated with expected metabolic perturbations in CRC including elevated tissue hypoxia, glycolysis, nucleotide biosynthesis, lipid metabolism, inflammation and steroid metabolism. OPLS-DA models showed that the metabolite profiles obtained via HR-MAS NMR could further differentiate colon from rectal cancers (Q(2)> 0.60, ROC AUC = 1.00, using 7-fold cross validation). These data suggest that metabolic profiling of CRC mucosae could provide new phenotypic biomarkers for CRC management.

424 citations


"Metabolic reprogramming of cancer-a..." refers methods in this paper

  • ...Cellular Succinate, Fumurate, and a-KG Detection The cellular content of succinate, fumurate, and a-KG were analyzed by GC-MS as previously described (Chan et al., 2009)....

    [...]

Related Papers (5)