scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application.

01 May 2020-Current Genomics (Bentham Science Publishers Ltd.)-Vol. 21, Iss: 4, pp 253-270
TL;DR: In this paper, a metagenomic analysis of microbial population engaged in the plastic biodegradation is recommended to decipher the microbial community structure and to predict their biode degradation potential in situ.
Abstract: Since the last few decades, the promiscuous and uncontrolled use of plastics led to the accumulation of millions of tons of plastic waste in the terrestrial and marine environment. It elevated the risk of environmental pollution and climate change. The concern arises more due to the reckless and unscientific disposal of plastics containing high molecular weight polymers, viz., polystyrene, polyamide, polyvinylchloride, polypropylene, polyurethane, and polyethylene, etc. which are very difficult to degrade. Thus, the focus is now paid to search for efficient, eco-friendly, low-cost waste management technology. Of them, degradation of non-degradable synthetic polymer using diverse microbial agents, viz., bacteria, fungi, and other extremophiles become an emerging option. So far, very few microbial agents and their secreted enzymes have been identified and characterized for plastic degradation, but with low efficiency. It might be due to the predominance of uncultured microbial species, which consequently remain unexplored from the respective plastic degrading milieu. To overcome this problem, metagenomic analysis of microbial population engaged in the plastic biodegradation is advisable to decipher the microbial community structure and to predict their biodegradation potential in situ. Advancements in sequencing technologies and bioinformatics analysis allow the rapid metagenome screening that helps in the identification of total microbial community and also opens up the scope for mining genes or enzymes (hydrolases, laccase, etc.) engaged in polymer degradation. Further, the extraction of the core microbial population and their adaptation, fitness, and survivability can also be deciphered through comparative metagenomic study. It will help to engineer the microbial community and their metabolic activity to speed up the degradation process.
Citations
More filters
01 Nov 2018
TL;DR: It was hypothesized that the microbial biofilm composition varies distinctly between different substrates, and characteristic and discriminatory taxa of significantly different biofilm communities were identified, indicating their specificity to a given substrate.
Abstract: To understand the ecological impacts of the “Plastisphere”, those microbes need to be identified that preferentially colonize and interact with synthetic polymer surfaces, as opposed to general surface colonizers. It was hypothesized that the microbial biofilm composition varies distinctly between different substrates. A long-term incubation experiment was conducted (15month) with nine different synthetic polymer films as substrate as well as glass using a natural seawater flow-through system. To identify colonizing microorganisms, 16S and 18SrRNA gene tag sequencing was performed. The microbial biofilms of these diverse artificial surfaces were visualized via scanning electron microscopy. Biofilm communities attached to synthetic polymers are distinct from glass associated biofilms; apparently a more general marine biofilm core community serves as shared core among all synthetic polymers rather than a specific synthetic polymer community. Nevertheless, characteristic and discriminatory taxa of significantly different biofilm communities were identified, indicating their specificity to a given substrate.

85 citations

Journal ArticleDOI
TL;DR: Plastics, with their ubiquitous presence in the authors' daily lives and environment, pose an uncomfortable conundrum but producers and consumers are aware of the value of these organic ingredients in material science.
Abstract: Plastics, with their ubiquitous presence in our daily lives and environment, pose an uncomfortable conundrum. Producers and consumers are aware of the value of these organic ingredients in material...

82 citations

Journal ArticleDOI
TL;DR: In this article, the role of various microbes and their enzymatic mechanisms involved in biodegradation of micro-nano plastics in wastewater (WW) stream, municipal sludge, municipal solid waste (MSW), and composting starting with biological and toxicological impacts of MNPs.

67 citations

Journal ArticleDOI
TL;DR: In this article, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability.
Abstract: Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.

41 citations

Journal ArticleDOI
TL;DR: In this paper , the authors highlight the scope of various microorganisms and their enzymes in plastic degradation and highlight the applications of co-cultures or microbial consortia-based approaches for the enhanced degradation of plastic polymers and the production of value-added end products that can be used as the prototypes of bioenergy sources.

29 citations

References
More filters
Journal ArticleDOI
TL;DR: By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, this work presents the first global analysis of all mass-produced plastics ever manufactured.
Abstract: Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050.

7,707 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: This work combines available data on solid waste with a model that uses population density and economic status to estimate the amount of land-based plastic waste entering the ocean, which is estimated to be 275 million metric tons.
Abstract: Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.

6,689 citations

Journal ArticleDOI
TL;DR: The authors' perspective on microbial diversity has improved enormously over the past few decades in large part due to molecular phylogenetic studies that objectively relate organisms.
Abstract: Our perspective on microbial diversity has improved enormously over the past few decades. In large part this has been due to molecular phylogenetic studies that objectively relate organisms. Phylogenetic trees based on gene sequences are maps with which to articulate the elusive concept of

2,323 citations


"Metagenomic Exploration of Plastic ..." refers background in this paper

  • ...Whereas, the potentiality of huge numbers of unidentified and unculturable microbes remain underestimated [37]....

    [...]