scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metal coordination in photoluminescent sensing

28 Jan 2013-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 42, Iss: 4, pp 1568-1600
TL;DR: The design principles and coordination chemistry of metal probes based on mechanisms of PeT, PCT, ESIPT, FRET, and excimer formation will be discussed in detail, with particular attention given to rationales for the design of turn-on and ratiometric probes.
Abstract: Coordination chemistry plays an essential role in the design of photoluminescent probes for metal ions. Metal coordination to organic dyes induces distinct optical responses which signal the presence of metal species of interest. Luminescent lanthanide (Ln(3+)) and transition metal complexes of d(6), d(8) and d(10) configurations often exhibit unique luminescence properties different from organic dyes, such as high quantum yield, large Stokes shift, long emission wavelength and emission lifetimes, low sensitivity to microenvironments, and can be explored as lumophores to construct probes for metal ions, anions and neutral species. In this review, the design principles and coordination chemistry of metal probes based on mechanisms of PeT, PCT, ESIPT, FRET, and excimer formation will be discussed in detail. Particular attention will be given to rationales for the design of turn-on and ratiometric probes. Moreover, phosphorescent probe design based on Ln(3+) and d(6), d(8) and d(10)-metal complexes are also presented via discussing certain factors affecting the phosphorescence of these metal complexes. A survey of the latest progress in photoluminescent probes for identification of essential metal cations in the human body or toxic metal cations in the environment will be presented focusing on their design rationales and sensing behaviors. Metal complex-based photoluminescent probes for biorelated anions such as PPi, and neutral biomolecules ATP, NO, and H(2)S will be discussed also in the context of their metal coordination-related sensing behaviors and design approaches.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays, which probe the chemical reactivity of analytes, rather than their physical properties.
Abstract: A comprehensive review is presented on the development and state of the art of colorimetric and fluorometric sensor arrays. Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties. This provides a high dimensionality to chemical sensing that permits high sensitivity (often down to ppb levels), impressive discrimination among very similar analytes and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, both in the gas and liquid phases.

664 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented and the various chemometric and statistical analyses of high-dimensional data are presented and critiqued in reference to their use in chemical sensing.
Abstract: A comprehensive review on the development and state of the art of colorimetric and fluorometric sensor arrays is presented Chemical sensing aims to detect subtle changes in the chemical environment by transforming relevant chemical or physical properties of molecular or ionic species (ie, analytes) into an analytically useful output Optical arrays based on chemoresponsive colorants (dyes and nanoporous pigments) probe the chemical reactivity of analytes, rather than their physical properties (eg, mass) The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (eg, the traditional lock-and-key model of substrate-enzyme interactions), but rather olfaction makes use of pattern recognition of the combined response of several hundred olfactory receptors In a similar fashion, arrays of chemoresponsive colorants provide high-dimensional data from the color or fluorescence changes of the dyes in these arrays as they are exposed to analytes This provides chemical sensing with high sensitivity (often down to parts per billion levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, in both the gas and liquid phases Design of both sensor arrays and instrumentation for their analysis are discussed In addition, the various chemometric and statistical analyses of high-dimensional data (including hierarchical cluster analysis (HCA), principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVMs), and artificial neural networks (ANNs)) are presented and critiqued in reference to their use in chemical sensing A variety of applications are also discussed, including personal dosimetry of toxic industrial chemical, detection of explosives or accelerants, quality control of foods and beverages, biosensing intracellularly, identification of bacteria and fungi, and detection of cancer and disease biomarkers

639 citations

Journal ArticleDOI
TL;DR: The methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT).
Abstract: Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet–triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Forster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were briefly discussed.

583 citations

Journal ArticleDOI
TL;DR: Two types of Zn-terephthalate (TPA) MOFs (namely [Zn(TPA)(DMF)] (1-DMF) and MOF-5) could exhibit an obvious room-temperature afterglow emission with a time-resolved luminescence lifetime as high as 0.47 seconds.
Abstract: Luminescent metal–organic frameworks (MOFs) have received much attention due to their wide structural tunability and potential application in light-emitting diodes, biological imaging and chemical sensors. However, successful examples of long-persistent afterglow MOFs are still quite limited to date. In this work, we report that two types of Zn-terephthalate (TPA) MOFs (namely [Zn(TPA)(DMF)] (1-DMF) and MOF-5) could exhibit an obvious room-temperature afterglow emission with a time-resolved luminescence lifetime as high as 0.47 seconds. The phosphorescence-based afterglow was also highly sensitive to the temperature, and the reversible emission intensity could be recycled under high/low temperatures. Moreover, both 1-DMF and MOF-5 showed highly tunable afterglow phosphorescence colors (from cyan to yellow and from green to red, respectively) upon treatment with pyridine solution. The fluorescence/phosphorescence emission color of MOF-5 can be reversibly switched due to the addition and removal of a pyridine guest to and from the host nanochannel, as shown in both experimental and computational studies. Therefore, this work not only shows a facile method to develop MOF-based long-afterglow materials at room temperature, but also presents a strategy to tune their phosphorescence in a wide range based on host–guest interactions.

337 citations

Journal ArticleDOI
TL;DR: A smart fluorescent probe containing a crown ether moiety could be developed as a sensor for metal ions, anions and other bio-molecules and be further applied to monitor the relevant biological process in vivo.
Abstract: Crown ethers, discovered by the winner of the Nobel Prize Charles Pedersen, are cyclic chemical compounds that consist of a ring or multiple rings containing several ether groups that are capable of binding alkali ions. A smart fluorescent probe containing a crown ether moiety could be developed as a sensor for metal ions, anions and other bio-molecules and be further applied to monitor the relevant biological process in vivo. This review highlights recent advances which can be divided into seven parts: (i) fluorescent probes containing a simple crown ether or an aza-crown ether structure; (ii) fluorescent probes containing an azathia crown ether; (iii) fluorescent probes containing a cryptand; (iv) fluorescent probes containing two or more binding sites; (v) crown ether derivatives-metal complex assisted chemosensing of bioactive species; (vi) crown ether-based chemosensors for bioactive molecular detection; and (vii) efforts to improve biological relevance.

316 citations

References
More filters
Journal ArticleDOI
TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Abstract: In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.

5,954 citations

Journal ArticleDOI
TL;DR: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and different strategies, including novel metal–protein attenuating compounds aimed at a variety of targets have shown promise in clinical studies.
Abstract: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.

3,376 citations

Journal ArticleDOI
TL;DR: Dementia developed in 111 subjects, including 83 given a diagnosis of Alzheimer's disease, over a median follow-up period of eight years, and plasma levels of folate and vitamins B12 and B6 increased.
Abstract: Background In cross-sectional studies, elevated plasma homocysteine levels have been associated with poor cognition and dementia. Studies of newly diagnosed dementia are required in order to establish whether the elevated homocysteine levels precede the onset of dementia or result from dementia-related nutritional and vitamin deficiencies. Methods A total of 1092 subjects without dementia (667 women and 425 men; mean age, 76 years) from the Framingham Study constituted our study sample. We examined the relation of the plasma total homocysteine level measured at base line and that measured eight years earlier to the risk of newly diagnosed dementia on follow-up. We used multivariable proportional-hazards regression to adjust for age, sex, apolipoprotein E genotype, vascular risk factors other than homocysteine, and plasma levels of folate and vitamins B12 and B6. Results Over a median follow-up period of eight years, dementia developed in 111 subjects, including 83 given a diagnosis of Alzheimer's disease....

3,090 citations

Journal ArticleDOI
TL;DR: The Rehybridization of the Acceptor (RICT) and Planarization ofThe Molecule (PICT) III is presented, with a comparison of the effects on yield and radiationless deactivation processes.
Abstract: 6. Rehybridization of the Acceptor (RICT) 3908 7. Planarization of the Molecule (PICT) 3909 III. Fluorescence Spectroscopy 3909 A. Solvent Effects and the Model Compounds 3909 1. Solvent Effects on the Spectra 3909 2. Steric Effects and Model Compounds 3911 3. Bandwidths 3913 4. Isoemissive Points 3914 B. Dipole Moments 3915 C. Radiative Rates and Transition Moments 3916 1. Quantum Yields and Radiationless Deactivation Processes 3916

2,924 citations