scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metal-free carbocatalysis in advanced oxidation reactions

01 Mar 2018-Accounts of Chemical Research (American Chemical Society)-Vol. 51, Iss: 3, pp 678-687
TL;DR: This Account showcases the recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and offers perspectives on carbocatalysis for future environmental applications.
Abstract: ConspectusCatalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.The journey starts with the dis...
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the preparation, characterization, modification, and especially environmental application of biochar, based on more than 200 papers published in recent 10 year, to provide an overview of Biochar with a particular on its environmental application.

1,017 citations

Journal ArticleDOI
TL;DR: This study not only provides robust and cheap carbonaceous materials for environmental remediation but also enables the first insight into the graphitic biochar-based nonradical catalysis.
Abstract: Environmentally friendly and low-cost catalysts are important for the rapid mineralization of organic contaminants in powerful advanced oxidation processes (AOPs). In this study, we reported N-doped graphitic biochars (N-BCs) as low-cost and efficient catalysts for peroxydisulfate (PDS) activation and the degradation of diverse organic pollutants in water treatment, including Orange G, phenol, sulfamethoxazole, and bisphenol A. The biochars at high annealing temperatures (>700 °C) presented highly graphitic nanosheets, large specific surface areas (SSAs), and rich doped nitrogen. In particular, N-BC derived at 900 °C (N-BC900) exhibited the highest degradation rate, which was 39-fold and 6.5-fold of that on N-BC400 and pristine biochar, respectively, and the N-BC900 surpassed most popular metal or nanocarbon catalysts. Different from the radical-based oxidation in N-BC400/PDS via the persistent free radicals (PFRs), singlet oxygen and nonradical pathways (surface-confined activated persulfate–carbon compl...

752 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date research progresses of iron-mediated activation of persulfate and peroxymonosulfate mediated by these iron-based species in both homogeneous and heterogeneous ways are summarized and discussed.

491 citations

Journal ArticleDOI
09 Jan 2020-Chem
TL;DR: In this article, metal-organic framework (MOF)-derived carbon materials (CMs) have drawn great interest in many fields of application, such as energy storage and conversion, environmental remediation, and catalysis.

476 citations

Journal ArticleDOI
TL;DR: It is illustrated that the roles of nitrogen species in CNT-based persulfate systems are intrinsically different, which provides new insights into the intrinsic roles of heteroatom doping in nanocarbons for persulfates activation and unveils the principles for rational design of reaction-oriented carbocatalysts for pers fulfilment in advanced oxidation processes.
Abstract: Persulfates activation by carbon nanotubes (CNT) has been evidenced as nonradical systems for oxidation of organic pollutants. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) possess discrepant atomic structures and redox potentials, while the nature of their distinct behaviors in carbocatalytic activation has not been investigated. Herein, we illustrated that the roles of nitrogen species in CNT-based persulfate systems are intrinsically different. In PMS activation mediated by nitrogen-doped CNT (N-CNT), surface chemical modification (N-doping) can profoundly promote the adsorption quantity of PMS, consequently elevate potential of derived nonradical N-CNT-PMS* complexes, and boost organic oxidation efficiency via an electron-transfer regime. In contrast, PDS adsorption was not enhanced upon incorporating N into CNT due to the limited equilibrium adsorption quantity of PDS, leading to a relatively lower oxidative potential of PDS/N-CNT system and a mediocre degradation rate. However, with equivalent persulfate adsorption on N-CNT at a low quantity, PDS/N-CNT exhibited a stronger oxidizing capacity than PMS/N-CNT because of the intrinsic higher redox potential of PDS than PMS. The oxidation rates of the two systems were in great linearity with the potentials of carbon-persulfate* complexes, suggesting N-CNT activation of PMS and PDS shared the similar electron-transfer oxidation mechanism. Therefore, this study provides new insights into the intrinsic roles of heteroatom doping in nanocarbons for persulfates activation and unveils the principles for a rational design of reaction-oriented carbocatalysts for persulfate-based advanced oxidation processes.

420 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR).
Abstract: Doping duo: Mesoporous graphene doped with both N and S atoms (N-S-G) was prepared in one step and studied as an electrochemical catalyst for the oxygen reduction reaction (ORR). The catalyst shows excellent ORR performance comparable to that of commercial Pt/C. The outstanding activity of N-S-G results from both the large number and the synergistic effect of the dopant heteroatoms.

1,936 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review on the development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on peroxymonosulfate (PMS) activation.
Abstract: Sulfate radical-based advanced oxidation processes (SR-AOPs) employing heterogeneous catalysts to generate sulfate radical (SO4 −) from peroxymonosulfate (PMS) and persulfate (PS) have been extensively employed for organic contaminant removal in water. This article aims to provide a state–of–the–art review on the recent development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on PMS activation. The hybrid heterogeneous catalyst/PMS systems integrated with other advanced oxidation technologies is also discussed. Several strategies for the identification of principal reactive radicals in SO4 −–oxidation systems are evaluated, namely (i) use of chemical probe or spin trapping agent coupled with analytical tools, and (ii) competitive kinetic approach using selective radical scavengers. The main challenges and mitigation strategies pertinent to the SR-AOPs are identified, which include (i) possible formation of oxyanions and disinfection byproducts, and (ii) dealing with sulfate produced and residual PMS. Potential future applications and research direction of SR-AOPs are proposed. These include (i) novel reactor design for heterogeneous catalytic system based on batch or continuous flow (e.g. completely mixed or plug flow) reactor configuration with catalyst recovery, and (ii) catalytic ceramic membrane incorporating SR-AOPs.

1,802 citations

Journal ArticleDOI
TL;DR: This review critically assesses the contributions of carbon-based nanomaterials to a broad range of environmental applications: sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, renewable energy technologies, and pollution prevention strategies.
Abstract: The unique and tunable properties of carbon-based nanomaterials enable new technologies for identifying and addressing environmental challenges. This review critically assesses the contributions of carbon-based nanomaterials to a broad range of environmental applications: sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, renewable energy technologies, and pollution prevention strategies. In linking technological advance back to the physical, chemical, and electronic properties of carbonaceous nanomaterials, this article also outlines future opportunities for nanomaterial application in environmental systems.

1,343 citations

Journal ArticleDOI
TL;DR: Chainmail for catalysts: a catalyst with iron nanoparticles confined inside pea-pod-like carbon nanotubes exhibits a high activity and remarkable stability as a cathode catalyst in polymer electrolyte membrane fuel cells (PEMFC), even in presence of SO(2).
Abstract: Chainmail for catalysts: a catalyst with iron nanoparticles confined inside pea-pod-like carbon nanotubes exhibits a high activity and remarkable stability as a cathode catalyst in polymer electrolyte membrane fuel cells (PEMFC), even in presence of SO(2). The approach offers a new route to electro- and heterogeneous catalysts for harsh conditions.

1,147 citations

Journal ArticleDOI
TL;DR: This poster presents a probabilistic procedure to evaluate the response of the H2O/O2 mixture to various pyrolysis conditions and shows promising results in both the horizontal and the vertical domain.
Abstract: Dang Sheng Su,*,†,‡ Siglinda Perathoner, and Gabriele Centi* †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110006, China ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany Dipartimento di Ingegneria Elettronica, Chimica ed Ingegneria Industriale, University of Messina and INSTM/CASPE (Laboratory of Catalysis for Sustainable Production and Energy), Viale Ferdinando Stagno, D’Alcontres 31, 98166 Messina, Italy

1,108 citations