scispace - formally typeset
Journal ArticleDOI

Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives

Reads0
Chats0
TLDR
In this paper, the authors discuss the recent applications of metal-organic framework nanoparticles (MOF NPs) in photodynamic therapy (PDT) of cancer and highlight the potential synergistic effect that could result from their association.
Abstract
This feature article covers the recent applications of metal-organic framework nanoparticles (MOF NPs) in photodynamic therapy (PDT) of cancer. It aims at giving the reader an overview about these two current research fields, i. e., MOF and PDT, and at highlighting the potential synergistic effect that could result from their association. After describing the general photophysics and photochemistry that underlie PDT, the relationship between photosensitizer (PS) properties and PDT requirements is discussed throughout the PSs historical development. This development reveals the advantages of using nanotechnology platforms for the creation of the ideal PS and leads us to define the fourth generation of PSs, which includes NPs built from the PS itself as porphysomes or PS-based MOF NPs. Especially, the precise spatial control over the PS assembly into well-defined MOF NPs, which keeps the PS in its monomeric form and prevents PS self-quenching, appears as a notable feature to solve PS solubility and aggregation issues and therefore improves the PDT efficiency. Finally, we discuss the future perspectives of MOF NPs in PDT and shed light on how promising these nanomaterials are.

read more

Citations
More filters
Journal ArticleDOI

Chemodynamic Therapy: Tumour Microenvironment‑Mediated Fenton and Fenton‑like Reactions

TL;DR: Various strategies based on the Fenton reaction have been employed to enhance hydroxyl radical generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview.
Journal ArticleDOI

Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy.

TL;DR: A cancer targeted cascade bioreactor was constructed by embedding glucose oxidase and catalase in the cancer cell membrane-camouflaged porphyrin metal-organic framework of PCN-224 to enhance its cancer targeting and retention abilities and displayed amplified synergistic therapeutic effects of long-term cancer starvation therapy and robust PDT.
Journal ArticleDOI

Photosensitizers for Photodynamic Therapy

TL;DR: The strategies to improve ROS generation through optimizing photoinduced electron transfer and energy transfer processes of PSs are highlighted and the approaches that combine PDT with other therapeutics and the targeted delivery in cancer cells or tumor tissue are introduced.
Journal ArticleDOI

Metal–Organic Framework Nanoparticles

TL;DR: Recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted.
Journal ArticleDOI

Photonic functional metal-organic frameworks.

TL;DR: The recent and important progress in the design and construction of photonic MOFs, as well as their various applications in luminescence sensing, white-light emission, photocatalysis, nonlinear optics, lasing devices, data storage, and biomedicine are summarized.
References
More filters
Journal ArticleDOI

The Chemistry and Applications of Metal-Organic Frameworks

TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Nanocarriers as an emerging platform for cancer therapy

TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Journal ArticleDOI

Metal–organic framework materials as catalysts

TL;DR: A critical review of the emerging field of MOF-based catalysis is presented and examples of catalysis by homogeneous catalysts incorporated as framework struts or cavity modifiers are presented.
Related Papers (5)