scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metal oxide nanoparticles for safe active and intelligent food packaging

TL;DR: In this paper, a review of current innovative synthesis methods for obtaining metal oxide nanoparticles and current incorporation techniques used to obtain smart (active and/or intelligent) packaging, focusing on bio-nanocomposites, commonly used metal oxides and future mixed metal or doped metal oxide.
Abstract: Background Food safety and food security remain the major concern of consumers and the food industry. Bacterial contamination continues to be a crucial food safety issue. Smart packaging incorporates both active and intelligent components. Intrinsic antibacterial activity, oxygen and ethylene scavenging (active) and the sensing (intelligent) properties of metal oxide nanoparticles are in research focus for application in smart food packaging, especially bio-nanocomposite films. Scope and approach Metal oxide nanoparticle properties are closely linked to their morphology resulting from the synthesis process. In this review, we cover current innovative synthesis methods for obtaining metal oxide nanoparticles and current incorporation techniques used to obtain smart (active and/or intelligent) packaging, focusing on bio-nanocomposites, commonly used metal oxides and future mixed metal or doped metal oxides. Taking into account safety, we focus on current legislation, and methods for risk assessment due to particle release from the packaging material and a summary of cytotoxic studies of metal oxide nanoparticles on human cells and the gut microbiota. Key findings and conclusions Antimicrobial effectiveness of metal oxide nanoparticles is highly dependent on morphology as a result of the synthesis method. Solution casting and electrospinning are innovative methods applied to synthesize metal oxide incorporated biopolymer films for active packaging with improved mechanical and barrier properties combined with active components (antimicrobial, ethylene scavenging). Metal oxides show sensitivity and selectivity to most gases produced during food spoilage. In selection of metal oxide for smart packaging, particle migration and cytotoxic activity are key issues requiring careful and detailed characterization.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging is provided.
Abstract: Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.

33 citations

Journal ArticleDOI
01 Nov 2022-Polymers
TL;DR: In this paper , the authors developed a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane, which was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure.
Abstract: The aim of this study was to develop a novel ultrathin fibrous membrane with a core–sheath structure as an antioxidant food packaging membrane. The core–sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.

23 citations

Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this article , a general guide for the design of PLA-based packaging materials with the desired mass transfer properties is provided, with the ultimate goal of providing a general guidance for the formulation of PLA materials.
Abstract: It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.

23 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the potentialities of biodegradable waste produced as a viable alternative to create a sustainable economy that benefits all humans is presented, focusing on the cost-effective synthesis of metal and metal oxide nanoparticles.
Abstract: The contemporary world is concerned only with non-biodegradable waste management which needs more sophisticated procedures as compared to biodegradable waste management. Biodegradable waste has the potential to become useful to society through a simple volarization technique. The researchers are behind sustainable nanotechnology pathways which are made possible by using biodegradable waste for the preparation of nanomaterials. This review emphasizes the potentialities of biodegradable waste produced as a viable alternative to create a sustainable economy that benefits all humans. Volarization results in the utilization of biowastes as well as provides safer and hazard-free green methods for the synthesis of nanoparticles. Starting from different sources to the application which includes therapeutics, food industry and water treatment. The review hovers over the pros and cons of biowaste-mediated nanoparticles and concludes with possible advances in the application. In the present scenario, the combination of green synthesis and biowaste can bring about a wide variety of applications in nanotechnology once the hurdles of bulk-scale industrial production are resolved. Given these points, the review is focused on the cost-effective synthesis of metal and metal oxide nanoparticles.

22 citations

Journal ArticleDOI
17 Jan 2022-Coatings
TL;DR: In this article , the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties were discussed, and challenges during the COVID-19 pandemic and a brief post-COVID-2019 scenario were also mentioned.
Abstract: Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. The aim of this manuscript is to provide an overview regarding the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties. Nanocarriers improve physical, chemical, and mechanical properties of the biopolymeric matrix and increase the bioactivity of released active compounds. Furthermore, challenges during the COVID-19 pandemic and a brief post-COVID-19 scenario were also mentioned.

21 citations

References
More filters
Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: A review of different types of antimicrobial polymers developed for food contact, commercial applications, testing methods, regulations and future trends is presented in this article, with a special emphasis on the advantages/disadvantages of each technology.
Abstract: Research and development of antimicrobial materials for food applications such as packaging and other food contact surfaces is expected to grow in the next decade with the advent of new polymer materials and antimicrobials. This article reviews the different types of antimicrobial polymers developed for food contact, commercial applications, testing methods, regulations and future trends. Special emphasis will be on the advantages/disadvantages of each technology.

1,491 citations

Journal ArticleDOI
TL;DR: The concept of photochemical sterilization was introduced in this article, where microorganisms were killed photoelectrochemically with semiconductor powder (platinum-loaded titanium oxide, TiO2/Pt).
Abstract: We report the novel concept of photochemical sterilization. Microbial cells were killed photoelectrochemically with semiconductor powder (platinum-loaded titanium oxide, TiO2/Pt). Coenzyme A, (CoA) in the whole cells was photo-electrochemically oxidized and, as a result, the respiration of cells was inhibited. Inhibition of respiratory activity caused death of the cells. Lactobacillus acidophilus, Saccharomyces cerevisiae and Escherichia coli (103 cells/ml respectively) were completely sterilized when they were incubated with TiO2/Pt particles under metal halide lamp irradiation for 60–120 min.

1,317 citations

Journal ArticleDOI
TL;DR: The results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.
Abstract: The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.

1,138 citations

Journal ArticleDOI
TL;DR: The main synthesis methods of ZnO nanoparticles, principal characteristics and mechanisms of antimicrobial action as well as the effect of their incorporation in polymeric matrices are discussed in this paper.
Abstract: Zinc oxide (ZnO) is an inorganic compound widely used in everyday applications. ZnO is currently listed as a generally recognized as safe (GRAS) material by the Food and Drug Administration and is used as food additive. The advent of nanotechnology has led the development of materials with new properties for use as antimicrobial agents. Thus, ZnO in nanoscale has shown antimicrobial properties and potential applications in food preservation. ZnO nanoparticles have been incorporated in polymeric matrices in order to provide antimicrobial activity to the packaging material and improve packaging properties. This review presents the main synthesis methods of ZnO nanoparticles, principal characteristics and mechanisms of antimicrobial action as well as the effect of their incorporation in polymeric matrices. Safety issues such as exposure routes and migration studies are also discussed.

977 citations