scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metal oxides for solid-state gas sensors: What determines our choice?

TL;DR: In this article, the analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review.
Abstract: The analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review. For these purposes the correlation between electro-physical (band gap, electroconductivity, type of conductivity, oxygen diffusion), thermodynamic, surface, electronic, structural properties, catalytic activity and gas-sensing characteristics of metal oxides designed for solid-state sensors was established. It has been discussed the role of metal oxide manufacturability, chemical activity, and parameter's stability in sensing material choice as well.
Citations
More filters
Journal ArticleDOI
Cheng-Xiang Wang1, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao 
15 Mar 2010-Sensors
TL;DR: A brief review of changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors: chemical components, surface-modification and microstructures of sensing layers, temperature and humidity.
Abstract: Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above.

2,122 citations


Cites background from "Metal oxides for solid-state gas se..."

  • ...Many papers about metal oxide gas sensors have been published in recent years [1-20]....

    [...]

  • ...such as TiO2, ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, are the least active with catalytic point of view [1]....

    [...]

  • ...gas-sensing material, the detection of this reaction can be performed by measuring the change of capacitance, work function, mass, optical characteristics or reaction energy released by the gas/solid interaction [1]....

    [...]

  • ...The range of electronic structures of oxides is so wide that metal oxides were divided into two the following categories [1]: (1) Transition-metal oxides (Fe2O3, NiO, Cr2O3, etc....

    [...]

  • ...Numerous researchers have shown that the reversible interaction of the gas with the surface of the material is a characteristic of conductometric semiconducting metal oxide gas sensors [1]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the dominant electronic and chemical mechanisms that influence the performance of metal-oxide-based resistive-type gas sensors are discussed, including p-n and n-n potential barrier manipulation, n-p-n response type inversions, spillover effects, synergistic catalytic behavior, and microstructure enhancement.
Abstract: Metal oxide-based resistive-type gas sensors are solid-state devices which are widely used in a number of applications from health and safety to energy efficiency and emission control. Nanomaterials such as nanowires, nanorods, and nanoparticles have dominated the research focus in this field due to their large number of surface sites facilitating surface reactions. Previous studies have shown that incorporating two or more metal oxides to form a heterojunction interface can have drastic effects on gas sensor performance, especially the selectivity. Recently, these effects have been amplified by designing heterojunctions on the nano-scale. These designs have evolved from mixed commercial powders and bi-layer films to finely-tuned core–shell and hierarchical brush-like nanocomposites. This review details the various morphological classes currently available for nanostructured metal-oxide based heterojunctions and then presents the dominant electronic and chemical mechanisms that influence the performance of these materials as resistive-type gas sensors. Mechanisms explored include p–n and n–n potential barrier manipulation, n–p–n response type inversions, spill-over effects, synergistic catalytic behavior, and microstructure enhancement. Tables are presented summarizing these works specifically for SnO2, ZnO, TiO2, In2O3, Fe2O3, MoO3, Co3O4, and CdO-based nanocomposites. Recent developments are highlighted and likely future trends are explored.

1,392 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of semiconductor metal oxide (SMO) gas sensors is provided for a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing.
Abstract: This review paper encompasses a detailed study of semiconductor metal oxide (SMO) gas sensors. It provides for a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing. Different parameters which affect the performance (sensitivity, selectivity and stability) of SMO gas sensors are discussed here under. This paper also gives an insight about the dopant or impurity induced variations in the SMO materials used for gas sensing. It is concluded that dopants enhance the properties of SMOs for gas sensing applications by changing their microstructure and morphology, activation energy, electronic structure or band gap of the metal oxides. In some cases, dopants create defects in SMOs by generating oxygen vacancy or by forming solid solutions. These defects enhance the gas sensing properties. Different nanostructures (nanowires, nanotubes, heterojunctions), other than nanopowders have also been studied in this review. At the end, examples of SMOs are given to illustrate the potential use of different SMO materials for gas sensing.

1,296 citations

Journal ArticleDOI
03 Jun 2013-ACS Nano
TL;DR: The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light, and ab initio DFT calculations show that the charge transfer is the reason for the decrease in resistance in the presence of applied field.
Abstract: Most of recent research on layered chalcogenides is understandably focused on single atomic layers. However, it is unclear if single-layer units are the most ideal structures for enhanced gas–solid interactions. To probe this issue further, we have prepared large-area MoS2 sheets ranging from single to multiple layers on 300 nm SiO2/Si substrates using the micromechanical exfoliation method. The thickness and layering of the sheets were identified by optical microscope, invoking recently reported specific optical color contrast, and further confirmed by AFM and Raman spectroscopy. The MoS2 transistors with different thicknesses were assessed for gas-sensing performances with exposure to NO2, NH3, and humidity in different conditions such as gate bias and light irradiation. The results show that, compared to the single-layer counterpart, transistors of few MoS2 layers exhibit excellent sensitivity, recovery, and ability to be manipulated by gate bias and green light. Further, our ab initio DFT calculations...

1,126 citations

Journal ArticleDOI
TL;DR: The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here and particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations.
Abstract: Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed.

1,096 citations

References
More filters
Book
01 Dec 1960
TL;DR: In this paper, the authors present a model for the development of the MICROSTRUCTURE in CERAMICS based on phase transformation, glass formation and glass-Ceramics.
Abstract: INTRODUCTION. Ceramic Processes and Products. CHARACTERISTICS OF CERAMIC SOLIDS. Structure of Crystals. Structure of Glasses. Structural Imperfections. Surfaces, Interfaces, and Grain Boundaries. Atom Mobility. DEVELOPMENT OF MICROSTRUCTURE IN CERAMICS. Ceramic Phase Equilibrium Diagrams. Phase Transformation, Glass Formation and Glass--Ceramics. Reactions with and between Solids. Grain Growth. Sintering and Vitrification. Microstructure of Ceramics. PROPERTIES OF CERAMICS. Thermal Properties. Optical Properties. Plastic Deformation, Viscous Flow and Creep. Elasticity, Anelasticity and Strength. Thermal and Compositional Stresses. Electrical Conductivity. Dielectric Properties. Magnetic Properties.

6,650 citations


"Metal oxides for solid-state gas se..." refers methods in this paper

  • ...Analyzing data, presented in [67,68,90–92], one can onclude that well-known metal oxides satisfy this requirement see Table 2)....

    [...]

  • ...[90] W....

    [...]

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract: Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

5,908 citations

Book
01 Jan 1986
TL;DR: In this paper, the authors presented the theory and properties of conjugated polymers, including transport, optical, and self-assembly properties of poly(3,4-Ethylenedioxythiophene)-polymers.
Abstract: Volume 1: Conjugated Polymers: Theory, Synthesis, Properties, and Characterization PART 1: THEORY OF CONJUGATED POLYMERS On the Transport, Optical, and Self-Assembly Properties of -Conjugated Materials: A Combined Theoretical/Experimental Insight D. Beljonne, J. Cornil, V. Coropceanu, D.A. da Silva Filho, V. Geskin, R. Lazzaroni, P. Leclere, and J.-L. Bredas Theoretical Studies of Electron-Lattice Dynamics in Organic Systems S. Stafstroem PART 2: SYNTHESIS AND CLASSES OF CONJUGATED POLYMERS Helical Polyacetylene Synthesized in Chiral Nematic Liquid Crystals K. Akagi Synthesis and Properties of Poly(arylene vinylene)s A.C. Grimsdale and A.B. Holmes Blue-Emitting Poly(para-Phenylene)-Type Polymers E.J.W. List and U. Scherf Poly(paraPhenyleneethynylene)s and Poly(aryleneethynylene)s: Materials with a Bright Future U.H.F. Bunz Polyaniline Nanofibers: Synthesis, Properties, and Applications J. Huang and R.B. Kaner Recent Advances in Polypyrrole S.H. Cho, K.T. Song, and J.Y. Lee Regioregular Polythiophenes M. Jeffries-El and R.D. McCullough Poly(3,4-Ethylenedioxythiophene)-Scientific Importance, Remarkable Properties, and Applications S. Kirchmeyer, K. Reuter, and J.C. Simpson Thienothiophenes: From Monomers to Polymers G.A. Sotzing, V. Seshadri, and F.J. Waller Low Bandgap Conducting Polymers S.C. Rasmussen and M. Pomerantz Advanced Functional Polythiophenes Based on Tailored Precursors P. Blanchard, P. Leriche, P. Frere, and J. Roncali Structure-Property Relationships and Applications of Conjugated Polyelectrolytes K.S. Schanze and X. Zhao PART 3: PROPERTIES AND CHARACTERIZATION OF CONJUGATED POLYMERS Insulator-Metal Transition and Metallic State in Conducting Polymers A.J. Epstein One-Dimensional Charge Transport in Conducting Polymer Nanofibers A.N. Aleshin and Y.W. Park Structure Studies of - and - Conjugated Polymers M.J. Winokur Electrochemistry of Conducting Polymers P. Audebert and F. Miomandre Internal Fields and Electrode Interfaces in Organic Semiconductor Devices: Noninvasive Investigations via Electroabsorption T.M. Brown and F. Cacialli Electrochromism of Conjugated Conducting Polymers A.L. Dyer and J.R. Reynolds Photoelectron Spectroscopy of Conjugated Polymers M.P. de Jong, G. Greczyniski, W. Osikowicz, R. Friedlein, X. Crispin, M. Fahlman, and W.R. Salaneck Ultrafast Exciton Dynamics and Laser Action in -ConjugatedSemiconductors Z. Valy Vardeny and O. Korovyanko Volume 2: Conjugated Polymers: Processing and Applications PART 1: PROCESSING OF CONJUGATED POLYMERS Conductive Polymers as Organic Nanometals B. Wessling Conducting Polymer Fiber Production and Applications I.D. Norris and B.R. Mattes Inkjet Printing and Patterning of PEDOT-PSS: Application to Optoelectronic Devices Y. Yoshioka and G.E. Jabbour Printing Organic Electronics on Flexible Substrates N.D. Robinson and M. Berggren PART 2: APPLICATIONS AND DEVICES BASED ON CONJUGATED POLYMERS Polymers for Use in Polymeric Light-Emitting Diodes: Structure-Property Relationships H. Christian-Pandya, S. Vaidyanathan, and M. Galvin Organic Electro-Optic Materials L.R. Dalton Conjugated Polymer Electronics-Engineering Materials and Devices N. Tessler, J. Veres, O. Globerman, N. Rappaport, Y. Preezant, Y. Roichman, O. Solomesch, S. Tal, E. Gershman, M. Adler, V. Zolotarev, V. Gorelik, and Y. Eichen Electrical Bistable Polymer Films and Their Applications in Memory Devices J. Ouyang, C.-W. Chu, R.J. Tseng, A. Prakash, and Y. Yang Electroactive Polymers for Batteries and Supercapacitors J.A. Irvin, D.J. Irvin, and J.D. Stenger-Smith Conjugated Polymer-Based Photovoltaic Devices A.J. Mozer and N.S. Sariciftci Biomedical Applications of Inherently Conducting Polymers (ICPs),P.C. Innis, S.E. Moulton, and G.G. Wallace Biosensors Based on Conducting Electroactive Polymers S. Brahim, A.M. Wilson, and A. Guiseppi-Elie Optical Biosensors Based on Conjugated Polymers K. Peter, R. Nilsson, and O. Inganas Conjugated Polymers for Microelectromechanical and Other Microdevices G.M. Spinks and E. Smela Corrosion Protection Using Conducting Polymers D.E. Tallman and G.P. Bierwagen Artificial Muscles T.F. Otero

5,843 citations

Book
01 Jan 1998
TL;DR: In this paper, an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes is presented, focusing on the basic principles behind the physical properties and giving the background necessary to understand the recent developments.
Abstract: This is an introductory textbook for graduate students and researchers from various fields of science who wish to learn about carbon nanotubes. The field is still at an early stage, and progress continues at a rapid rate. This book focuses on the basic principles behind the physical properties and gives the background necessary to understand the recent developments. Some useful computational source codes which generate coordinates for carbon nanotubes are also included in the appendix.

5,055 citations

Book
01 Jan 1996
TL;DR: In this paper, the authors present a detailed overview of the properties of Fullerenes and their properties in surface science applications, such as scanning tunnel microscopy, growth and fragmentation studies, and chemical synthesis.
Abstract: Historical Introduction. Carbon Materials. Structure of Fullerenes. Symmetry Considerations. Growth and Fragmentation Studies. Crystalline Structure of Fullerenes. Synthesis of Fullerene Molecules and Solids. Doping of Fullerenes. Structure of Doped Fullerenes and Fullerene Compounds. Fullerene Chemistry. Vibrational Modes. Thermal Properties. Electronic Structure. Optical Properties. Electrical and Thermal Properties. Superconductivity. Nuclear Magnetic Resonance Studies. Electron Paramagnetic Resonance. Surface Science Techniques on Fullerenes. Magnetic Properties. Fullerene-Related Tubules and Spherules. Scanning Tunnel Microscopy. Applications.

4,008 citations