scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition at 2 years of age.

01 Oct 2011-Diabetes Care (American Diabetes Association)-Vol. 34, Iss: 10, pp 2279-2284
TL;DR: Children exposed to metformin had larger measures of subcutaneous fat, but overall body fat was the same as in children whose mothers were treated with insulin alone, and further follow-up is required to examine whether these findings persist into later life and whether children exposed to meetformin will develop less visceral fat and be more insulin sensitive.
Abstract: OBJECTIVE In women with gestational diabetes mellitus, who were randomized to metformin or insulin treatment, pregnancy outcomes were similar (Metformin in Gestational diabetes [MiG] trial). Metformin crosses the placenta, so it is important to assess potential effects on growth of the children. RESEARCH DESIGN AND METHODS In Auckland, New Zealand, and Adelaide, Australia, women who had participated in the MiG trial were reviewed when their children were 2 years old. Body composition was measured in 154 and 164 children whose mothers had been randomized to metformin and insulin, respectively. Children were assessed with anthropometry, bioimpedance, and dual energy X-ray absorptiometry (DEXA), using standard methods. RESULTS The children were similar for baseline maternal characteristics and pregnancy outcomes. In the metformin group, compared with the insulin group, children had larger mid-upper arm circumferences (17.2 ± 1.5 vs. 16.7 ± 1.5 cm; P = 0.002) and subscapular (6.3 ± 1.9 vs. 6.0 ± 1.7 mm; P = 0.02) and biceps skinfolds (6.03 ± 1.9 vs. 5.6 ± 1.7 mm; P = 0.04). Total fat mass and percentage body fat assessed by bioimpedance ( n = 221) and DEXA ( n = 114) were not different. CONCLUSIONS Children exposed to metformin had larger measures of subcutaneous fat, but overall body fat was the same as in children whose mothers were treated with insulin alone. Further follow-up is required to examine whether these findings persist into later life and whether children exposed to metformin will develop less visceral fat and be more insulin sensitive. If so, this would have significant implications for the current pandemic of diabetes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
11 Jul 2019
TL;DR: Gestational diabetes mellitus is the most common complication in pregnancy and has short-term and long-term effects in both mother and offspring, and dietary modification and increased physical activity are the primary treatments, but pharmacotherapy, usually insulin, is used when normoglycaemia is not achieved.
Abstract: Hyperglycaemia that develops during pregnancy and resolves after birth has been recognized for over 50 years, but uniform worldwide consensus is lacking about threshold hyperglycaemic levels that merit a diagnosis of ‘gestational diabetes mellitus’ (GDM) and thus treatment during pregnancy. GDM is currently the most common medical complication of pregnancy, and prevalence of undiagnosed hyperglycaemia and even overt diabetes in young women is increasing. Maternal overweight and obesity, later age at childbearing, previous history of GDM, family history of type 2 diabetes mellitus and ethnicity are major GDM risk factors. Diagnosis is usually performed using an oral glucose tolerance test (OGTT), although a non-fasting, glucose challenge test (GCT) is used in some parts of the world to screen women for those requiring a full OGTT. Dietary modification and increased physical activity are the primary treatments for GDM, but pharmacotherapy, usually insulin, is used when normoglycaemia is not achieved. Oral hypoglycaemic agents, principally metformin and glibenclamide (glyburide), are also used in some countries. Treatment improves immediate pregnancy outcomes, reducing excess fetal growth and adiposity and pregnancy-related hypertensive disorders. GDM increases the risk of long-term complications, including obesity, impaired glucose metabolism and cardiovascular disease, in both the mother and infant. Optimal management of mother and infant during long-term follow-up remains challenging, with very limited implementation of preventive strategies in most parts of the world. Gestational diabetes mellitus (GDM) is the most common complication in pregnancy and has short-term and long-term effects in both mother and offspring. This Primer discusses the definitions of GDM, diagnosis and management of the disease and areas requiring further research.

643 citations

Journal ArticleDOI
TL;DR: Lifestyle modification is the primary approach; use of medications for diabetes prevention after GDM remains controversial and family planning enables optimization of health in subsequent pregnancies.
Abstract: Gestational diabetes mellitus (GDM) carries a small but potentially important risk of adverse perinatal outcomes and a long-term risk of obesity and glucose intolerance in offspring. Mothers with GDM have an excess of hypertensive disorders during pregnancy and a high risk of developing diabetes mellitus thereafter. Diagnosing and treating GDM can reduce perinatal complications, but only a small fraction of pregnancies benefit. Nutritional management is the cornerstone of treatment; insulin, glyburide and metformin can be used to intensify treatment. Fetal measurements complement maternal glucose monitoring in the identification of pregnancies that require such intensification. Glucose testing shortly after delivery can stratify the short-term diabetes risk in mothers. Thereafter, annual glucose and HbA(1c) testing can detect deteriorating glycaemic control, a harbinger of future diabetes mellitus, usually type 2 diabetes mellitus. Interventions that mitigate obesity or its metabolic effects are most potent in preventing or delaying diabetes mellitus. Lifestyle modification is the primary approach; use of medications for diabetes prevention after GDM remains controversial. Family planning enables optimization of health in subsequent pregnancies. Breastfeeding may reduce obesity in children and is recommended. Families should be encouraged to help children adopt lifestyles that reduce the risk of obesity.

467 citations

Journal ArticleDOI
TL;DR: The role of metformin in the treatment of patients with type 2 diabetes is reviewed, its potential role for a variety of insulin resistant and pre-diabetic states, obesity, metabolic abnormalities associated with HIV disease, gestational diabetes, cancer, and neuroprotection are discussed.
Abstract: The management of T2DM requires aggressive treatment to achieve glycemic and cardiovascular risk factor goals. In this setting, metformin, an old and widely accepted first line agent, stands out not only for its antihyperglycemic properties but also for its effects beyond glycemic control such as improvements in endothelial dysfunction, hemostasis and oxidative stress, insulin resistance, lipid profiles, and fat redistribution. These properties may have contributed to the decrease of adverse cardiovascular outcomes otherwise not attributable to metformin’s mere antihyperglycemic effects. Several other classes of oral antidiabetic agents have been recently launched, introducing the need to evaluate the role of metformin as initial therapy and in combination with these newer drugs. There is increasing evidence from in vivo and in vitro studies supporting its anti-proliferative role in cancer and possibly a neuroprotective effect. Metformin’s negligible risk of hypoglycemia in monotherapy and few drug interactions of clinical relevance give this drug a high safety profile. The tolerability of metformin may be improved by using an appropiate dose titration, starting with low doses, so that side-effects can be minimized or by switching to an extended release form. We reviewed the role of metformin in the treatment of patients with type 2 diabetes and describe the additional benefits beyond its glycemic effect. We also discuss its potential role for a variety of insulin resistant and pre-diabetic states, obesity, metabolic abnormalities associated with HIV disease, gestational diabetes, cancer, and neuroprotection.

455 citations


Cites background from "Metformin in gestational diabetes: ..."

  • ...Results of the MiG TOFU reported that infants of diabetic mothers exposed to metformin in utero and examined at 2 years of age may present a reduction in insulin resistance, probably related to an increase in subcutaneous fat [48]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Evidence from several disciplines is synthesized to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.
Abstract: Many lines of evidence, including epidemiologic data and extensive clinical and experimental studies, indicate that early life events play a powerful role in influencing later susceptibility to certain chronic diseases. This review synthesizes evidence from several disciplines to support the contention that environmental factors acting during development should be accorded greater weight in models of disease causation.

3,290 citations


"Metformin in gestational diabetes: ..." refers background in this paper

  • ...It is possible that there are critical windows where interventionmight improve these outcomes (21)....

    [...]

Journal ArticleDOI
TL;DR: Treatment of gestational diabetes reduces serious perinatal morbidity and may also improve the woman's health-related quality of life.
Abstract: Background We conducted a randomized clinical trial to determine whether treatment of women with gestational diabetes mellitus reduced the risk of perinatal complications. Methods We randomly assig...

2,732 citations

Journal ArticleDOI
TL;DR: Analysis of insulin resistance at 11 years in a multivariate logistic regression revealed that childhood obesity and the combination of LGA status and maternal GDM were associated with insulin resistance, with odds ratios of 4.3 and 4.4 (95% CI: 1.5–74.4), respectively.
Abstract: Objective. Childhood obesity has contributed to an increased incidence of type 2 diabetes mellitus and metabolic syndrome (MS) among children. Intrauterine exposure to diabetes and size at birth are risk factors for type 2 diabetes mellitus, but their association with MS in childhood has not been demonstrated. We examined the development of MS among large-for-gestational-age (LGA) and appropriate-for-gestational age (AGA) children. Study Design. The major components of MS (obesity, hypertension, dyslipidemia, and glucose intolerance) were evaluated in a longitudinal cohort study of children at age 6, 7, 9, and 11 years who were LGA ( n = 84) or AGA ( n = 95) offspring of mothers with or without gestational diabetes mellitus (GDM). The cohort consisted of 4 groups, ie, LGA offspring of control mothers, LGA offspring of mothers with GDM, AGA offspring of control mothers, and AGA offspring of mothers with GDM. Biometric and anthropometric measurements were obtained at 6, 7, 9, and 11 years. Biochemical testing included measurements of postprandial glucose and insulin levels and high-density lipoprotein (HDL) cholesterol levels at 6 and 7 years and of fasting glucose, insulin, triglyceride, and HDL cholesterol levels at 9 and 11 years. We defined the components of MS as (1) obesity (BMI >85th percentile for age), (2) diastolic or systolic blood pressure >95th percentile for age, (3) postprandial glucose level >140 mg/dL or fasting glucose level >110 mg/dL, (4) triglyceride level >95th percentile for age, and (5) HDL level Results. There were no differences in baseline characteristics (gender, race, socioeconomic status, and maternal weight gain during pregnancy) for the 4 groups except for birth weight, but there was a trend toward a higher prevalence of maternal obesity before pregnancy in the LGA/GDM group. Obesity (BMI >85th percentile) at 11 years was present in 25% to 35% of the children, but rates were not different between LGA and AGA offspring. There was a trend toward a higher incidence of insulin resistance, defined as a fasting glucose/insulin ratio of Conclusions. We showed that LGA offspring of diabetic mothers were at significant risk of developing MS in childhood. The prevalence of MS in the other groups was similar to the prevalence (4.8%) among white adolescents in the 1988–1994 National Health and Nutrition Examination Survey. This effect of LGA with maternal GDM on childhood MS was previously demonstrated for Pima Indian children but not the general population. We also found that children exposed to maternal obesity were at increased risk of developing MS, which suggests that obese mothers who do not fulfill the clinical criteria for GDM may still have metabolic factors that affect fetal growth and postnatal outcomes. Children who are LGA at birth and exposed to an intrauterine environment of either diabetes or maternal obesity are at increased risk of developing MS. Given the increased obesity prevalence, these findings have implications for perpetuating the cycle of obesity, insulin resistance, and their consequences in subsequent generations.

2,131 citations

Journal ArticleDOI
TL;DR: Treatment of mild gestational diabetes mellitus did not significantly reduce the frequency of a composite outcome that included stillbirth or perinatal death and several neonatal complications, but it did reduce the risks of fetal overgrowth, shoulder dystocia, cesarean delivery, and hypertensive disorders.
Abstract: Background It is uncertain whether treatment of mild gestational diabetes mellitus improves pregnancy outcomes. Methods Women who were in the 24th to 31st week of gestation and who met the criteria for mild gestational diabetes mellitus (i.e., an abnormal result on an oral glucose-tolerance test but a fasting glucose level below 95 mg per deciliter [5.3 mmol per liter]) were randomly assigned to usual prenatal care (control group) or dietary intervention, self-monitoring of blood glucose, and insulin therapy, if necessary (treatment group). The primary outcome was a composite of stillbirth or perinatal death and neonatal complications, including hyperbilirubinemia, hypoglycemia, hyperinsulinemia, and birth trauma. Results A total of 958 women were randomly assigned to a study group — 485 to the treatment group and 473 to the control group. We observed no significant difference between groups in the frequency of the composite outcome (32.4% and 37.0% in the treatment and control groups, respectively; P=0.1...

1,587 citations

Journal ArticleDOI
01 Dec 2000-Diabetes
TL;DR: The risk of diabetes was significantly higher in siblings born after the mother developed diabetes than in those born before the mother's diagnosis of diabetes, and there were no significant differences in risk of Diabetes or BMI between offspring born before and after the father was diagnosed with diabetes.
Abstract: Intrauterine exposure to diabetes is associated with an excess of diabetes and obesity in the offspring, but the effects of intrauterine exposure are confounded by genetic factors. To determine the role of the intrauterine diabetic environment per se, the prevalence of diabetes and the mean BMI were compared in siblings born before and after their mother was recognized as having diabetes. Nuclear families in which at least one sibling was born before and one after the mother was diagnosed with type 2 diabetes were selected. Consequently, the siblings born before and after differed in their exposure to diabetes in utero. A total of 58 siblings from 19 families in which at least one sibling had diabetes were examined at similar ages (within 3 years). The risk of diabetes was significantly higher in siblings born after the mother developed diabetes than in those born before the mother's diagnosis of diabetes (odds ratio 3.7, P = 0.02). In 52 families, among 183 siblings without diabetes, the mean BMI was 2.6 kg/m2 higher in offspring of diabetic than in offspring of nondiabetic pregnancies (P = 0.003). In contrast, there were no significant differences in risk of diabetes or BMI between offspring born before and after the father was diagnosed with diabetes. Intrauterine exposure to diabetes per se conveys a high risk for the development of diabetes and obesity in offspring in excess of risk attributable to genetic factors alone.

1,130 citations