scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Methane emissions from terrestrial plants under aerobic conditions

12 Jan 2006-Nature (Nature Publishing Group)-Vol. 439, Iss: 7073, pp 187-191
TL;DR: It is demonstrated using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process, suggesting that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.
Abstract: Methane is an important greenhouse gas and its atmospheric concentration has almost tripled since pre-industrial times. It plays a central role in atmospheric oxidation chemistry and affects stratospheric ozone and water vapour levels. Most of the methane from natural sources in Earth's atmosphere is thought to originate from biological processes in anoxic environments. Here we demonstrate using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process. Significant methane emissions from both intact plants and detached leaves were observed during incubation experiments in the laboratory and in the field. If our measurements are typical for short-lived biomass and scaled on a global basis, we estimate a methane source strength of 62-236 Tg yr(-1) for living plants and 1-7 Tg yr(-1) for plant litter (1 Tg = 10(12) g). We suggest that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.
Citations
More filters
Journal ArticleDOI

11,070 citations


Cites background from "Methane emissions from terrestrial ..."

  • ...The recent discovery that methane is emitted by plants (Keppler et al. 2006) destroys the idea that they can compensate for carbon emissions....

    [...]

Journal ArticleDOI
TL;DR: The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used to quantify net terrestrial biosphere emission of isoprene into the atmosphere as mentioned in this paper.
Abstract: . Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.

3,746 citations

Journal Article
TL;DR: Denman et al. as discussed by the authors presented the Couplings between changes in the climate system and biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany), Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Austin (USA), D.B. Wofsy (USA) and Xiaoye Zhang (China).
Abstract: Couplings Between Changes in the Climate System and Biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany) Lead Authors: Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Dickinson (USA), Didier Hauglustaine (France), Christoph Heinze (Norway, Germany), Elisabeth Holland (USA), Daniel Jacob (USA, France), Ulrike Lohmann (Switzerland), Srikanthan Ramachandran (India), Pedro Leite da Silva Dias (Brazil), Steven C. Wofsy (USA), Xiaoye Zhang (China) Contributing Authors: D. Archer (USA), V. Arora (Canada), J. Austin (USA), D. Baker (USA), J.A. Berry (USA), R. Betts (UK), G. Bonan (USA), P. Bousquet (France), J. Canadell (Australia), J. Christian (Canada), D.A. Clark (USA), M. Dameris (Germany), F. Dentener (EU), D. Easterling (USA), V. Eyring (Germany), J. Feichter (Germany), P. Friedlingstein (France, Belgium), I. Fung (USA), S. Fuzzi (Italy), S. Gong (Canada), N. Gruber (USA, Switzerland), A. Guenther (USA), K. Gurney (USA), A. Henderson-Sellers (Switzerland), J. House (UK), A. Jones (UK), C. Jones (UK), B. Karcher (Germany), M. Kawamiya (Japan), K. Lassey (New Zealand), C. Le Quere (UK, France, Canada), C. Leck (Sweden), J. Lee-Taylor (USA, UK), Y. Malhi (UK), K. Masarie (USA), G. McFiggans (UK), S. Menon (USA), J.B. Miller (USA), P. Peylin (France), A. Pitman (Australia), J. Quaas (Germany), M. Raupach (Australia), P. Rayner (France), G. Rehder (Germany), U. Riebesell (Germany), C. Rodenbeck (Germany), L. Rotstayn (Australia), N. Roulet (Canada), C. Sabine (USA), M.G. Schultz (Germany), M. Schulz (France, Germany), S.E. Schwartz (USA), W. Steffen (Australia), D. Stevenson (UK), Y. Tian (USA, China), K.E. Trenberth (USA), T. Van Noije (Netherlands), O. Wild (Japan, UK), T. Zhang (USA, China), L. Zhou (USA, China) Review Editors: Kansri Boonpragob (Thailand), Martin Heimann (Germany, Switzerland), Mario Molina (USA, Mexico) This chapter should be cited as: Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2,208 citations

01 Nov 2012
TL;DR: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) as mentioned in this paper is an update from the previous versions including MEGAN1.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGan2.02, which were described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al (2008).
Abstract: . The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic algorithms to account for the major known processes controlling biogenic emissions. It is available as an offline code and has also been coupled into land surface and atmospheric chemistry models. MEGAN2.1 is an update from the previous versions including MEGAN2.0, which was described for isoprene emissions by Guenther et al. (2006) and MEGAN2.02, which was described for monoterpene and sesquiterpene emissions by Sakulyanontvittaya et al. (2008). Isoprene comprises about half of the total global biogenic volatile organic compound (BVOC) emission of 1 Pg (1000 Tg or 1015 g) estimated using MEGAN2.1. Methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene, limonene, ethene, and propene together contribute another 30% of the MEGAN2.1 estimated emission. An additional 20 compounds (mostly terpenoids) are associated with the MEGAN2.1 estimates of another 17% of the total emission with the remaining 3% distributed among >100 compounds. Emissions of 41 monoterpenes and 32 sesquiterpenes together comprise about 15% and 3%, respectively, of the estimated total global BVOC emission. Tropical trees cover about 18% of the global land surface and are estimated to be responsible for ~80% of terpenoid emissions and ~50% of other VOC emissions. Other trees cover about the same area but are estimated to contribute only about 10% of total emissions. The magnitude of the emissions estimated with MEGAN2.1 are within the range of estimates reported using other approaches and much of the differences between reported values can be attributed to land cover and meteorological driving variables. The offline version of MEGAN2.1 source code and driving variables is available from http://bai.acd.ucar.edu/MEGAN/ and the version integrated into the Community Land Model version 4 (CLM4) can be downloaded from http://www.cesm.ucar.edu/ .

2,007 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

01 Jan 2013
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,469 citations

Journal ArticleDOI
03 Jun 1999-Nature
TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Abstract: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial–interglacial cycles. The succession of changes through each climate cycle and termination was similar, and atmospheric and climate properties oscillated between stable bounds. Interglacial periods differed in temporal evolution and duration. Atmospheric concentrations of carbon dioxide and methane correlate well with Antarctic air-temperature throughout the record. Present-day atmospheric burdens of these two important greenhouse gases seem to have been unprecedented during the past 420,000 years.

5,109 citations

Journal ArticleDOI
TL;DR: In this paper, the possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics.
Abstract: The possible responses of ecosystem processes to rising atmospheric CO2 concentration and climate change are illustrated using six dynamic global vegetation models that explicitly represent the interactions of ecosystem carbon and water exchanges with vegetation dynamics. The models are driven by the IPCC IS92a scenario of rising CO2 (Wigley et al. 1991), and by climate changes resulting from effective CO2 concentrations corresponding to IS92a, simulated by the coupled ocean atmosphere model HadCM2-SUL. Simulations with changing CO2 alone show a widely distributed terrestrial carbon sink of 1.4‐3.8 Pg C y ‐1 during the 1990s, rising to 3.7‐8.6 Pg C y ‐1 a century later. Simulations including climate change show a reduced sink both today (0.6‐ 3.0 Pg C y ‐1 ) and a century later (0.3‐6.6 Pg C y ‐1 ) as a result of the impacts of climate change on NEP of tropical and southern hemisphere ecosystems. In all models, the rate of increase of NEP begins to level off around 2030 as a consequence of the ‘diminishing return’ of physiological CO2 effects at high CO2 concentrations. Four out of the six models show a further, climate-induced decline in NEP resulting from increased heterotrophic respiration and declining tropical NPP after 2050. Changes in vegetation structure influence the magnitude and spatial pattern of the carbon sink and, in combination with changing climate, also freshwater availability (runoff). It is shown that these changes, once set in motion, would continue to evolve for at least a century even if atmospheric CO2 concentration and climate could be instantaneously stabilized. The results should be considered illustrative in the sense that the choice of CO2 concentration scenario was arbitrary and only one climate model scenario was used. However, the results serve to indicate a range of possible biospheric responses to CO2 and climate change. They reveal major uncertainties about the response of NEP to climate

1,982 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed progress on estimating and understanding both the magnitude of, and controls on, emissions of CH4 from natural wetlands and calculated global wetland CH4 emissions using this extensive flux data base and the wetland areas compiled and published by Matthews and Fung (1987).

744 citations

Related Papers (5)
Trending Questions (1)
What is the origin of a lot of the methane greenhouse gases emissions?

Most of the methane greenhouse gas emissions are thought to originate from biological processes in anoxic environments.