scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review

11 Nov 2020-Energies (Multidisciplinary Digital Publishing Institute)-Vol. 13, Iss: 22, pp 5879
TL;DR: In this article, the state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM) are discussed.
Abstract: Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel, fuel/oxygen ratio, pressure, temperature, humidity, cell potential, and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol, cell temperature, catalyst loading, membrane thickness, and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
Citations
More filters
Journal ArticleDOI
15 May 2021-Energies
TL;DR: In this article, a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground.
Abstract: Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS), such as high energy densities, low leakage rates and big storage volumes, risk analysis of UHS is a required step for assessing the suitability of this technology. In this work, a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground. The influence of hydrogen contamination by bacterial metabolism was studied, considering the composition of the gas contained in the salt caverns as time variable. A bow-tie analysis was used to highlight all the possible causes (basic events) as well as the outcomes (jet fire, unconfined vapor cloud explosion (UVCE), toxic chemical release), and then, consequence and risk analyses were performed. The results showed that a UVCE is the most frequent outcome, but its effect zone decreases with time due to the hydrogen contamination and the higher contents of methane and hydrogen sulfide.

20 citations

Journal ArticleDOI
TL;DR: In this paper , an effective low-energy input for hydrogen generation via methanol-assisted water electrolysis catalyzed by bifunctional Pt-CoTe/NC nanospheres is demonstrated.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the non-platinum-based electrode materials used for PEM fuel cell in the past seven years (2015-2021) and also envisaged on the role of novel cost-effective electrode materials in diverse operating environment.
Abstract: The crucial component involved in a polymer electrolyte membrane (PEM) fuel cell stack is the catalyst electrode material which performs a significant role in reaction kinetics and subsequently on the performance. Recent days have given impetus to the advancements of a relatively cost-effective, yet high-performance electrocatalyst for PEM fuel cell application. Qualitative studies reveal that significant advancements in the stability and activity of non-platinum electrocatalysts were achieved that could make a significant contribution on commercializing the PEM fuel cells in a vast scale. The present paper reviews the non-platinum-based electrode materials used for PEM fuel cell in the past seven years (2015–2021) and also envisages on the role of novel cost-effective electrode materials. In addition, the paper also provides a critical snapshot on the advancements of the PEM fuel cell electrode materials in diverse operating environment.

11 citations

Journal ArticleDOI
TL;DR: In this paper , a comparative economic study between liquid hydrogen and methanol as hydrogen vectors for the bulk transport of hydrogen at sea has been performed, and it is shown that for the production of liquid hydrogen at 1 Mt/y with an electricity cost of 40 USD/MWh, liquid hydrogen is the cheapest alternative with a levelized cost of hydrogen in the destination of approximately 2 USD/kg for all of the explored routes.
Abstract: For the first time, a comparative economic study between liquid hydrogen and methanol as hydrogen vectors for the bulk transport of hydrogen at sea has been performed. The objective of this study is to gain insight on whether it is cost-effective to produce green hydrogen locally or, instead, import it from another location overseas featuring lower costs of renewable energy. In addition, this study aims to determine the break-even point at which the hydrogen transport alternatives, covered in this study, become more inexpensive. The alternatives covered include the seaborne transport of liquid hydrogen or methanol with the reconversion to hydrogen at the destination through methanol electrolysis or a steam-reforming process. Three different production mass flow rates of hydrogen at the origin are explored, 100 kt/y, 1 Mt/y, and 10 Mt/y, in regard to three representative routes: Brazil–Spain, Brazil–The Netherlands, and Australia–Japan. The findings of this study suggest that for the production of hydrogen at 1 Mt/y with an electricity cost of 40 USD/MWh, liquid hydrogen is the cheapest alternative with a levelized cost of hydrogen at the destination of approximately 2 USD/kg for all of the explored routes. If the synthesized e-methanol reaching the import destination is directly used as an energy vector, the levelized cost of energy contained in this e-methanol practically coincides with that of liquid hydrogen at a mass flow rate of 10 Mt/y at the origin.

11 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: Recent developments in the search for innovative materials with high hydrogen-storage capacity are presented.
Abstract: Mobility — the transport of people and goods — is a socioeconomic reality that will surely increase in the coming years. It should be safe, economic and reasonably clean. Little energy needs to be expended to overcome potential energy changes, but a great deal is lost through friction (for cars about 10 kWh per 100 km) and low-efficiency energy conversion. Vehicles can be run either by connecting them to a continuous supply of energy or by storing energy on board. Hydrogen would be ideal as a synthetic fuel because it is lightweight, highly abundant and its oxidation product (water) is environmentally benign, but storage remains a problem. Here we present recent developments in the search for innovative materials with high hydrogen-storage capacity.

7,414 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Abstract: Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.

6,938 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art for PEM electrolysis technology is presented, which provides an insightful overview of the research that is already done and the challenges that still exist.

3,208 citations

Journal ArticleDOI
TL;DR: More than 100 articles related to anode catalysts for the direct methanol fuel cell (DMFC) are reviewed, mainly focusing on the three most active areas: (1) progress in preparation methods of Pt-Ru catalysts with respect to activity improvement and utilization optimization; (2) preparation of novel carbon materials as catalyst supports to create a highly dispersed and stably supported catalysts; (3) exploration of new catalysts having a low noble metal content and non-noble metal elements through fast activity down-selection methods such as combinatorial methods.

1,607 citations

Journal ArticleDOI
01 Feb 2012
TL;DR: The possible configurations allowing the integration of water electrolysis units with renewable energy sources in both autonomous and grid-connected systems are presented and some relevant demonstration projects are commented.
Abstract: This paper reviews water electrolysis technologies for hydrogen production and also surveys the state of the art of water electrolysis integration with renewable energies. First, attention is paid to the thermodynamic and electrochemical processes to better understand how electrolysis cells work and how they can be combined to build big electrolysis modules. The electrolysis process and the characteristics, advantages, drawbacks, and challenges of the three main existing electrolysis technologies, namely alkaline, polymer electrolyte membrane, and solid oxide electrolyte, are then discussed. Current manufacturers and the main features of commercially available electrolyzers are extensively reviewed. Finally, the possible configurations allowing the integration of water electrolysis units with renewable energy sources in both autonomous and grid-connected systems are presented and some relevant demonstration projects are commented.

1,026 citations