scispace - formally typeset
Search or ask a question
Dissertation

Methodological issues in the analysis of individual- and aggregate-participant level data for cost effectiveness analysis

TL;DR: In this paper, a taxonomy of the methodological and analytical issues in the use and synthesis of evidence for cost effectiveness modelling is presented, with guidance on appropriate synthesis methodologies to use and identifying areas where further methodological contributions are needed.
Abstract: Health care economic evaluations assess the costs and consequences of competing interventions, programmes or services. Such assessments use a decision model, with parameters informed by available evidence. Evidence, however, is rarely derived from a single source, in which case researchers are expected to combine information on multiple sources. This thesis contributes to the methodological debate on the use of evidence, particularly, the use of individual level data (IPD), for cost effectiveness analysis. This thesis defines a taxonomy which summarises the methodological and analytical issues in the use and synthesis of evidence for cost effectiveness modelling. For alternative parameter types (e.g. relative effectiveness, costs) the taxonomy offers guidance on appropriate synthesis methodologies to use and identifies areas where further methodological contributions are needed. The thesis also explores methods of synthesis of IPD and develops novel frameworks which allow both IPD and AD to be jointly modelled, specifically in estimating relative effectiveness. The use of IPD from studies is found desirable, particularly when the estimation of subgroup effects is of interest. An applied decision model of the cost effectiveness of smoke alarm equipment in households with pre-school children is developed within this thesis. This application offers a means to evaluate the impact of using IPD on the cost effectiveness outcomes, compared to the use of AD. The thesis examines the advantages of having access to IPD when quantifying decision uncertainty. Additionally, it discusses the use of IPD in estimating the value of further research. Specifically, a framework is used which allows considering population subgroups. It is argued that the use of IPD allows a more suitable characterisation of decision uncertainty, appropriately allowing for subgroup value of information analysis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is concluded that multiple Imputation for Nonresponse in Surveys should be considered as a legitimate method for answering the question of why people do not respond to survey questions.
Abstract: 25. Multiple Imputation for Nonresponse in Surveys. By D. B. Rubin. ISBN 0 471 08705 X. Wiley, Chichester, 1987. 258 pp. £30.25.

3,216 citations

Journal ArticleDOI
01 Feb 1932-Nature
TL;DR: It is scarcely an exaggeration to say that the recently issued preliminary report on the census of 1931 is one of the most sensational documents which has appeared for years, and that he who reads it intelligently will understand what is meant by saying that civilisation is in the melting pot.
Abstract: QUITE apart from the academic consideration that vital and medical statistics now form an obligatory part of the education of students seeking the University of London's diploma in public health, the demand for information about the methods of vital and medical statistics is increasing. The most casual reader of the newspapers is now aware that population problems are of serious practical importance and that the publications of the General Register Office cannot be ignored. It is scarcely an exaggeration to say that the recently issued preliminary report on the census of 1931 is one of the most sensational documents which has appeared for years, and that he who reads it intelligently will understand what is meant by saying that civilisation is in the melting pot. An Introduction to Medical Statistics. By Hilda M. Woods William T. Russell. Pp. x + 125. (London: P. S. King and Son, Ltd., 1931.) 7s. 6d.

1,329 citations

Posted Content
TL;DR: In this paper, the authors used a cardiovascular disease (CVD) model and cost per QALY thresholds to assess the consequence of using different baseline health state utility profiles (perfect health, individuals with no history of CVD, general population) in conjunction with three models (minimum, additive, multiplicative) frequently used to estimate proxy scores for multiple health conditions.
Abstract: Background: When estimating health state utility values (HSUV) for multiple health conditions, the alternative models used to combine these data can produce very different values. Results generated using a baseline of perfect health are not comparable with those generated using a baseline adjusted for not having the health condition taking into account age and gender. Despite this, there is no guidance on the preferred techniques that should be used and very little research describing the effect on cost per QALY results. Methods: Using a cardiovascular disease (CVD) model and cost per QALY thresholds, we assess the consequence of using different baseline health state utility profiles (perfect health, individuals with no history of CVD, general population) in conjunction with three models (minimum, additive, multiplicative) frequently used to estimate proxy scores for multiple health conditions. Results: Assuming a baseline of perfect health ignores the natural decline in quality of life associated with co-morbidities, over-estimating the benefits of treatment to such an extent it could potentially influence a threshold policy decision. The minimum model biases results in favour of younger aged cohorts, while the additive and multiplicative technique produces similar results. Although further research in additional health conditions is required to support our findings, this pilot study highlights the urgent need for analysts to conform to an agreed reference case and provides initial recommendations for better practice. We demonstrate that in CVD, if data are not available from individuals without the health condition, HSUVs from the general population provide a reasonable approximation.

152 citations

References
More filters
01 Jan 2005
TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Abstract: The problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion. These terms are a valid large-sample criterion beyond the Bayesian context, since they do not depend on the a priori distribution.

36,760 citations

Book
23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

21,235 citations

Proceedings Article
01 Jan 1973
TL;DR: The classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion to provide answers to many practical problems of statistical model fitting.
Abstract: In this paper it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion. This observation shows an extension of the principle to provide answers to many practical problems of statistical model fitting.

18,539 citations

Book
01 Jan 1995
TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.
Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

16,079 citations

Book
01 Jan 1987
TL;DR: In this article, a survey of drinking behavior among men of retirement age was conducted and the results showed that the majority of the participants reported that they did not receive any benefits from the Social Security Administration.
Abstract: Tables and Figures. Glossary. 1. Introduction. 1.1 Overview. 1.2 Examples of Surveys with Nonresponse. 1.3 Properly Handling Nonresponse. 1.4 Single Imputation. 1.5 Multiple Imputation. 1.6 Numerical Example Using Multiple Imputation. 1.7 Guidance for the Reader. 2. Statistical Background. 2.1 Introduction. 2.2 Variables in the Finite Population. 2.3 Probability Distributions and Related Calculations. 2.4 Probability Specifications for Indicator Variables. 2.5 Probability Specifications for (X,Y). 2.6 Bayesian Inference for a Population Quality. 2.7 Interval Estimation. 2.8 Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates. 2.9 Evaluating the Performance of Procedures. 2.10 Similarity of Bayesian and Randomization--Based Inferences in Many Practical Cases. 3. Underlying Bayesian Theory. 3.1 Introduction and Summary of Repeated--Imputation Inferences. 3.2 Key Results for Analysis When the Multiple Imputations are Repeated Draws from the Posterior Distribution of the Missing Values. 3.3 Inference for Scalar Estimands from a Modest Number of Repeated Completed--Data Means and Variances. 3.4 Significance Levels for Multicomponent Estimands from a Modest Number of Repeated Completed--Data Means and Variance--Covariance Matrices. 3.5 Significance Levels from Repeated Completed--Data Significance Levels. 3.6 Relating the Completed--Data and Completed--Data Posterior Distributions When the Sampling Mechanism is Ignorable. 4. Randomization--Based Evaluations. 4.1 Introduction. 4.2 General Conditions for the Randomization--Validity of Infinite--m Repeated--Imputation Inferences. 4.3Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse. 4.4 Further Discussion of Proper Imputation Methods. 4.5 The Asymptotic Distibution of (Qm,Um,Bm) for Proper Imputation Methods. 4.6 Evaluations of Finite--m Inferences with Scalar Estimands. 4.7 Evaluation of Significance Levels from the Moment--Based Statistics Dm and Dm with Multicomponent Estimands. 4.8 Evaluation of Significance Levels Based on Repeated Significance Levels. 5. Procedures with Ignorable Nonresponse. 5.1 Introduction. 5.2 Creating Imputed Values under an Explicit Model. 5.3 Some Explicit Imputation Models with Univariate YI and Covariates. 5.4 Monotone Patterns of Missingness in Multivariate YI. 5.5 Missing Social Security Benefits in the Current Population Survey. 5.6 Beyond Monotone Missingness. 6. Procedures with Nonignorable Nonresponse. 6.1 Introduction. 6.2 Nonignorable Nonresponse with Univariate YI and No XI. 6.3 Formal Tasks with Nonignorable Nonresponse. 6.4 Illustrating Mixture Modeling Using Educational Testing Service Data. 6.5 Illustrating Selection Modeling Using CPS Data. 6.6 Extensions to Surveys with Follow--Ups. 6.7 Follow--Up Response in a Survey of Drinking Behavior Among Men of Retirement Age. References. Author Index. Subject Index. Appendix I. Report Written for the Social Security Administration in 1977. Appendix II. Report Written for the Census Bureau in 1983.

14,574 citations