scispace - formally typeset
Search or ask a question
Patent

Methods and apparatus for making particles using spray dryer and in-line jet mill

TL;DR: In this article, a single-step spray drying and in-line jet milling process was proposed to deal with the problem of particle deagglomeration and grinding in a single unit operation.
Abstract: Methods and apparatus are provided for making particles comprising: (a) spraying an emulsion, solution, or suspension, which comprises a solvent and a bulk material (e.g., a pharmaceutical agent), through an atomizer and into a primary drying chamber, having a drying gas flowing therethrough, to form droplets comprising the solvent and bulk material dispersed in the drying gas; (b) evaporating, in the primary drying chamber, at least a portion of the solvent into the drying gas to solidify the droplets and form particles dispersed in drying gas; and (c) flowing the particles and at least a portion of the drying gas through a jet mill to deagglomerate or grind the particles. By coupling spray drying with “in-line” jet milling, a single step process is created from two separate unit operations, and an additional collection step is advantageously eliminated. The one-step, in-line process has further advantages in time and cost of processing.
Citations
More filters
Journal ArticleDOI
TL;DR: These technologies cover traditional micronization and powder blending, controlled solvent crystallization, spray drying, spray freeze drying, particle formation from liquid dispersion systems, supercritical fluid processing and particle coating.
Abstract: With the rapidly growing popularity and sophistication of inhalation therapy, there is an increasing demand for tailor-made inhalable drug particles capable of affording the most efficient delivery to the lungs and the most optimal therapeutic outcomes. To cope with this formulation demand, a wide variety of novel particle technologies have emerged over the past decade. The present review is intended to provide a critical account of the current goals and technologies of particle engineering for the development of pulmonary drug delivery systems. These technologies cover traditional micronization and powder blending, controlled solvent crystallization, spray drying, spray freeze drying, particle formation from liquid dispersion systems, supercritical fluid processing and particle coating. The merits and limitations of these technologies are discussed with reference to their applications to specific drug and/or excipient materials. The regulatory requirements applicable to particulate inhalation products are also reviewed briefly.

631 citations

Patent
06 Mar 2013
TL;DR: In this article, the authors present an apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, and methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof.
Abstract: The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.

119 citations

Patent
12 Jun 2009
TL;DR: A breath-powered, dry powder inhaler, a cartridge, and a pulmonary drug delivery system are provided in this article, which can be provided with or without a unit dose cartridge for using with the inhaler.
Abstract: A breath-powered, dry powder inhaler, a cartridge, and a pulmonary drug delivery system are provided. The dry powder inhaler can be provided with or without a unit dose cartridge for using with the inhaler. The inhaler and/or cartridge can be provided with a drug delivery formulation comprising, for example, a diketopiperazine and an active ingredient, including, peptides and proteins such as insulin and glucagon-like peptide 1 for the treatment of diabetes and/or obesity. The dry powder inhaler is compact; can be provided in various shapes and sizes, colors, and comprises a housing, a mouthpiece, a cartridge placement area, and a mechanism for opening and closing the medicament cartridge. The device is easy to manufacture, provides a pre-metered single unit dose, it is relatively easy to use, and can be reusable or disposable.

104 citations

Patent
20 Nov 2003
TL;DR: In this paper, a dry powder blend pharmaceutical formulation comprising of microparticles which comprise a pharmaceutical agent and an excipient in the form of particles having a volume average diameter that is greater than the volumetric average diameter of the micro-articles is presented.
Abstract: Methods are provided for making a dry powder blend pharmaceutical formulation comprising (i) forming microparticles which comprise a pharmaceutical agent; (ii) providing at least one excipient in the form of particles having a volume average diameter that is greater than the volume average diameter of the microparticles; (iii) blending the microparticles with the excipient to form a powder blend; and (iv) jet milling the powder blend to deagglomerate at least a portion of any of the microparticles which have agglomerated, while substantially maintaining the size and morphology of the individual microparticles. Jet milling advantageously can eliminate the need for more complicated wet deagglomeration processes, can lower residual moisture and solvent levels in the microparticles (which leads to better stability and handling properties for dry powder formulations), and can improve wettability, suspendability, and content uniformity of dry powder blend formulations.

98 citations

Patent
08 Jul 2004
TL;DR: In this paper, a dry process-based electrochemical device and method for making a self-supporting dry electrode film for use therein are described and a cost effective manufacture of electrochemical devices such as batteries, capacitors, and fuel cells is enabled.
Abstract: A dry process-based electro-chemical device and method for making a self-supporting dry electrode film for use therein is disclosed. Cost effective manufacture of electro-chemical devices such as batteries, capacitors, and fuel cells is enabled.

87 citations

References
More filters
Book
01 Oct 2007
TL;DR: In this paper, conversion factors and mathematical symbols are used to describe conversion factors in physical and chemical data and Mathematical Symbols are used for converting, converting, and utilising conversion factors.
Abstract: Section 1: Conversion Factors and Mathematical Symbols Section 2: Physical and Chemical Data Section 3: Mathematics Section 4: Thermodynamics Section 5: Heat and Mass Transfer Section 6: Fluid and Plastic Dynamics Section 7: Reaction Kinetics Section 8: Process Control Section 9: Process Economics Section 10: Transport and Storage of Fluids Section 11: Heat-Transfer Equipment Section 12: Psychrometry, Evaporative Cooling, and Solids Drying Section 13: Distillation Section 14: Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation Section 15: Liquid-Liquid Extraction and Other Liquid-Liquid Operations and Equipment Section 16: Adsorption and Ion Exchange Section 17: Gas-Solid Operations and Equipment Section 18: Liquid-Solid Operations and Equipment Section 19: Reactors Section 20: Alternative Separation Processes Section 21: Solid-Solid Operations and Processing Section 22: Waste Management Section 23: Process Safety Section 24: Energy Resources, Conversion, and Utilization Section 25: Materials of Construction Index

10,028 citations

Patent
25 May 2000
TL;DR: In this article, low aqueous solubility drugs are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aaqueous media.
Abstract: Drugs, especially low aqueous solubility drugs, are provided in a porous matrix form, preferably microparticles, which enhances dissolution of the drug in aqueous media. The drug matrices preferably are made using a process that includes (i) dissolving a drug, preferably a drug having low aqueous solubility, in a volatile solvent to form a drug solution, (ii) combining at least one pore forming agent with the drug solution to form an emulsion, suspension, or second solution and hydrophilic or hydrophobic excipients that stabilize the drug and inhibit crystallization, and (iii) removing the volatile solvent and pore forming agent from the emulsion, suspension, or second solution to yield the porous matrix of drug. Hydrophobic or hydrophilic excipients may be selected to stabilize the drug in crystalline form by inhibiting crystal growth or to stabilize the drug in amorphous form by preventing crystallization. The pore forming agent can be either a volatile liquid that is immiscible with the drug solvent or a volatile solid compound, preferably a volatile salt. In a preferred embodiment, spray drying is used to remove the solvents and the pore forming agent. The resulting porous matrix has a faster rate of dissolution following administration to a patient, as compared to non-porous matrix forms of the drug. In a preferred embodiment, microparticles of the porous drug matrix are reconstituted with an aqueous medium and administered parenterally, or processed using standard techniques into tablets or capsules for oral administration.

543 citations

Patent
16 Jan 1997
TL;DR: Aerodynamically light particles incorporating a surfactant on the surface thereof for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided in this article, where the particles are made of a biodegradable material and have a tap density less than 0.4 g/cm 3 and a mass mean diameter between 5 μm and 30 μm.
Abstract: Aerodynamically light particles incorporating a surfactant on the surface thereof for drug delivery to the pulmonary system, and methods for their synthesis and administration are provided. In a preferred embodiment, the aerodynamically light particles are made of a biodegradable material and have a tap density less than 0.4 g/cm 3 and a mass mean diameter between 5 μm and 30 μm. The particles may be formed of biodegradable materials such as biodegradable polymers. For example, the particles may be formed of poly(lactic acid) or poly(glycolic acid) or copolymers thereof. Alternatively, the particles may be formed solely of the drug or diagnostic agent and a surfactant. Surfactants can be incorporated on the particle surface for example by coating the particle after particle formation, or by incorporating the surfactant in the material forming the particle prior to formation of the particle. Exemplary surfactants include phosphoglycerides such as L-α-phosphatidylcholine dipalmitoyl. The aerodynamically light particles incorporating a therapeutic or diagnostic agent and a surfactant may be effectively aerosolized for administration to the respiratory tract to permit systemic or local delivery of wide a variety of therapeutic agents.

493 citations

Patent
23 Jun 1994
TL;DR: A therapeutic preparation for inhalation which comprises insulin and a substance which enhances the absorption of insulin in the lower respiratory tract, is provided in the form of a powder preparation suitable for inhaling.
Abstract: A therapeutic preparation for inhalation which comprises insulin and a substance which enhances the absorption of insulin in the lower respiratory tract, is provided in the form of a powder preparation suitable for inhalation.

229 citations