scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Methods of combining multiple classifiers and their applications to handwriting recognition

01 May 1992-Vol. 22, Iss: 3, pp 418-435
TL;DR: On applying these methods to combine several classifiers for recognizing totally unconstrained handwritten numerals, the experimental results show that the performance of individual classifiers can be improved significantly.
Abstract: Possible solutions to the problem of combining classifiers can be divided into three categories according to the levels of information available from the various classifiers. Four approaches based on different methodologies are proposed for solving this problem. One is suitable for combining individual classifiers such as Bayesian, k-nearest-neighbor, and various distance classifiers. The other three could be used for combining any kind of individual classifiers. On applying these methods to combine several classifiers for recognizing totally unconstrained handwritten numerals, the experimental results show that the performance of individual classifiers can be improved significantly. For example, on the US zipcode database, 98.9% recognition with 0.90% substitution and 0.2% rejection can be obtained, as well as high reliability with 95% recognition, 0% substitution, and 5% rejection. >
Citations
More filters
Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,670 citations


Cites background or methods from "Methods of combining multiple class..."

  • ...If the classifier outputs are interpreted as fuzzy membership values, belief values or evidence, fuzzy rules [4], [5], belief functions and Dempster-Shafer techniques [9], [18], [20], [23] are used....

    [...]

  • ...If continuous outputs like posteriori probabilities are supplied, an average or some other linear combination have been suggested [11], [23], [25], [33]....

    [...]

  • ...This can be achieved by using different feature sets [23], [13] as well as by different training sets, randomly selected [12], [22] or based on a cluster analysis [3]....

    [...]

Book
01 Jan 1996
TL;DR: Professor Ripley brings together two crucial ideas in pattern recognition; statistical methods and machine learning via neural networks in this self-contained account.
Abstract: From the Publisher: Pattern recognition has long been studied in relation to many different (and mainly unrelated) applications, such as remote sensing, computer vision, space research, and medical imaging. In this book Professor Ripley brings together two crucial ideas in pattern recognition; statistical methods and machine learning via neural networks. Unifying principles are brought to the fore, and the author gives an overview of the state of the subject. Many examples are included to illustrate real problems in pattern recognition and how to overcome them.This is a self-contained account, ideal both as an introduction for non-specialists readers, and also as a handbook for the more expert reader.

5,632 citations


Cites background from "Methods of combining multiple class..."

  • ...been widely suggested more recently, for example by Lincoln & Skrzypek (1990); Bridle & Cox (1991); Wolpert (1992); Xu et al. (1992) ; Perrone & Cooper (1993)....

    [...]

Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations

Posted Content
01 Jan 2001
TL;DR: This paper gives a lightning overview of data mining and its relation to statistics, with particular emphasis on tools for the detection of adverse drug reactions.
Abstract: The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

3,765 citations

References
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Book
01 Jan 1976
TL;DR: This book develops an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions.
Abstract: Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

14,565 citations

Journal ArticleDOI
Robert M. Haralick1
01 Jan 1979
TL;DR: This survey reviews the image processing literature on the various approaches and models investigators have used for texture, including statistical approaches of autocorrelation function, optical transforms, digital transforms, textural edgeness, structural element, gray tone cooccurrence, run lengths, and autoregressive models.
Abstract: In this survey we review the image processing literature on the various approaches and models investigators have used for texture. These include statistical approaches of autocorrelation function, optical transforms, digital transforms, textural edgeness, structural element, gray tone cooccurrence, run lengths, and autoregressive models. We discuss and generalize some structural approaches to texture based on more complex primitives than gray tone. We conclude with some structural-statistical generalizations which apply the statistical techniques to the structural primitives.

5,112 citations

Journal ArticleDOI
TL;DR: The purpose of this tutorial paper is to give an introduction to the theory of Markov models, and to illustrate how they have been applied to problems in speech recognition.
Abstract: The basic theory of Markov chains has been known to mathematicians and engineers for close to 80 years, but it is only in the past decade that it has been applied explicitly to problems in speech processing. One of the major reasons why speech models, based on Markov chains, have not been developed until recently was the lack of a method for optimizing the parameters of the Markov model to match observed signal patterns. Such a method was proposed in the late 1960's and was immediately applied to speech processing in several research institutions. Continued refinements in the theory and implementation of Markov modelling techniques have greatly enhanced the method, leading to a wide range of applications of these models. It is the purpose of this tutorial paper to give an introduction to the theory of Markov models, and to illustrate how they have been applied to problems in speech recognition.

4,546 citations