scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects

01 Jun 2013-Biomass & Bioenergy (Pergamon)-Vol. 53, pp 29-38
TL;DR: In this paper, the authors examined three aspects of micro-algae production that will ultimately determine the future economic viability and environmental sustainability: the energy and carbon balance, environmental impacts and production cost.
Abstract: Micro-algae have received considerable interest as a potential feedstock for producing sustainable transport fuels (biofuels). The perceived benefits provide the underpinning rationale for much of the public support directed towards micro-algae research. Here we examine three aspects of micro-algae production that will ultimately determine the future economic viability and environmental sustainability: the energy and carbon balance , environmental impacts and production cost . This analysis combines systematic review and meta-analysis with insights gained from expert workshops. We find that achieving a positive energy balance will require technological advances and highly optimised production systems. Aspects that will need to be addressed in a viable commercial system include: energy required for pumping, the embodied energy required for construction, the embodied energy in fertilizer, and the energy required for drying and de-watering. The conceptual and often incomplete nature of algae production systems investigated within the existing literature, together with limited sources of primary data for process and scale-up assumptions, highlights future uncertainties around micro-algae biofuel production. Environmental impacts from water management, carbon dioxide handling, and nutrient supply could constrain system design and implementation options. Cost estimates need to be improved and this will require empirical data on the performance of systems designed specifically to produce biofuels. Significant (>50%) cost reductions may be achieved if CO 2 , nutrients and water can be obtained at low cost. This is a very demanding requirement, however, and it could dramatically restrict the number of production locations available.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed discussion to produce biodiesel, fuel gas, bio-oil, methane, hydrogen and alcohol from microalgae biomass are also included, along with updated research, challenges and the way forward of micro-algae biofuels are also presented.
Abstract: Biofuels productions from microalgae received wide attention recently and have high potential to replace fossil fuels. This paper served as a platform to critically review current production technologies of microalgae, ranging from cultivation, harvesting, extraction and several biofuels conversion processes. In addition, due to the high photosynthetic efficiency of microalgae, mass cultivation of microalgae is believed to be able to efficiently reduce the carbon dioxide emission to atmosphere and thus, reducing the impact of global warming. This is because microalgae have high growth rate and is able to develop maximum of 70% of lipid content within their cells depending on species. Apart from that, microalgae have the ability to survive under harsh condition and occupied smaller cultivation land area than other land crops. The harvested microalgae biomass can be used for electrical generation, while its crude lipid can be used as transportation fuel as it has 80% average energy content of petroleum. In the present paper, a detailed discussion to produce biodiesel, fuel gas, bio-oil, methane, hydrogen and alcohol from microalgae biomass are also included. Besides, updated research, challenges and the way forward of microalgae biofuels are also presented. In future, biofuels production from microalgae can be economical viable at some scale, which is then profitable in terms of economics and also environment.

446 citations

Journal ArticleDOI
TL;DR: Future research endeavors in biofuels production should be placed on the search of novel biofuel production species, optimization and improvement of culture conditions, genetic engineering of biofuel-producing species, and effective techniques for mass cultivation of microorganisms.

421 citations


Cites background from "Micro-algae cultivation for biofuel..."

  • ...Based on current knowledge, the usage of microalgae is being considered as an attractive feedstock for biofuels production [10]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effects of the inoculation ratios of a Chlorella vulgaris and nitrifier-enriched-activated-sludge (NAS) consortium on nutrient removal, carbon capture, and metabolite generation were investigated under autotrophic conditions.

396 citations

Journal ArticleDOI
TL;DR: The need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact is highlighted.

390 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a state-of-the-art review on the process effect, especially on the effects of photobiochemical process, micro algal species, physicochemical process and hydrodynamic process on the performance of microalgal-CO2 fixation and biomass production.
Abstract: Global warming caused by anthropogenic CO2 emission has been one of the most important issues in the fields of science, environment and even international economics and politics. To control and reduce CO2 emissions, intensive carbon dioxide capture and storage (CCS) technologies have been comprehensively developed for sequestration of CO2 especially from combustion flue gas. Microalgae-based CO2 biological fixation is regarded as a potential way to not only reduce CO2 emission but also achieve energy utilization of microalgal biomass. However, in this approach culture process of microalgae plays an important role as it is directly related to the mechanism of microalgal-CO2 fixation and characteristics of microalgal biomass production. The aim of this work is to present a state-of-the-art review on the process effect, especially on the effects of photobiochemical process, microalgal species, physicochemical process and hydrodynamic process on the performance of microalgal-CO2 fixation and biomass production. Also, the perspectives are proposed in order to provide a positive reference on developing its fundamental research and key technology.

338 citations

References
More filters
Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the technologies underpinning microalgae-to-bio-fuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products.
Abstract: Sustainability is a key principle in natural resource management, and it involves operational efficiency, minimisation of environmental impact and socio-economic considerations; all of which are interdependent. It has become increasingly obvious that continued reliance on fossil fuel energy resources is unsustainable, owing to both depleting world reserves and the green house gas emissions associated with their use. Therefore, there are vigorous research initiatives aimed at developing alternative renewable and potentially carbon neutral solid, liquid and gaseous biofuels as alternative energy resources. However, alternate energy resources akin to first generation biofuels derived from terrestrial crops such as sugarcane, sugar beet, maize and rapeseed place an enormous strain on world food markets, contribute to water shortages and precipitate the destruction of the world's forests. Second generation biofuels derived from lignocellulosic agriculture and forest residues and from non-food crop feedstocks address some of the above problems; however there is concern over competing land use or required land use changes. Therefore, based on current knowledge and technology projections, third generation biofuels specifically derived from microalgae are considered to be a technically viable alternative energy resource that is devoid of the major drawbacks associated with first and second generation biofuels. Microalgae are photosynthetic microorganisms with simple growing requirements (light, sugars, CO 2 , N, P, and K) that can produce lipids, proteins and carbohydrates in large amounts over short periods of time. These products can be processed into both biofuels and valuable co-products. This study reviewed the technologies underpinning microalgae-to-biofuels systems, focusing on the biomass production, harvesting, conversion technologies, and the extraction of useful co-products. It also reviewed the synergistic coupling of microalgae propagation with carbon sequestration and wastewater treatment potential for mitigation of environmental impacts associated with energy conversion and utilisation. It was found that, whereas there are outstanding issues related to photosynthetic efficiencies and biomass output, microalgae-derived biofuels could progressively substitute a significant proportion of the fossil fuels required to meet the growing energy demand.

4,432 citations

Journal ArticleDOI
TL;DR: A review of second generation biodiesel production systems using microalgae can be found in this paper, where the main advantages of second-generation microalgal systems are that they: (1) have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) can couple CO2-neutral fuel production with CO2 sequestration: (
Abstract: The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (∼66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.

2,254 citations


"Micro-algae cultivation for biofuel..." refers background in this paper

  • ...[2] Schenk MP, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al....

    [...]

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.
Abstract: Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing for arable land. Worldwide, research and demonstration programs are being carried out to develop the technology needed to expand algal lipid production from a craft to a major industrial process. Although microalgae are not yet produced at large scale for bulk applications, recent advances—particularly in the methods of systems biology, genetic engineering, and biorefining—present opportunities to develop this process in a sustainable and economical way within the next 10 to 15 years.

1,712 citations


"Micro-algae cultivation for biofuel..." refers background in this paper

  • ...substituted all existing transport fuels with algae biofuels this would require w25 million tonnes of nitrogen and 4 million tonnes of phosphorus per annum [20]....

    [...]

Journal ArticleDOI
TL;DR: The outcome confirms the potential of microalgae as an energy source but highlights the imperative necessity of decreasing the energy and fertilizer consumption and control of nitrogen stress during the culture and optimization of wet extraction seem to be valuable options.
Abstract: This paper provides an analysis of the potential environmental impacts of biodiesel production from microalgae. High production yields of microalgae have called forth interest of economic and scientific actors but it is still unclear whether the production of biodiesel is environmentally interesting and which transformation steps need further adjustment and optimization. A comparative LCA study of a virtual facility has been undertaken to assess the energetic balance and the potential environmental impacts of the whole process chain, from the biomass production to the biodiesel combustion. Two different culture conditions, nominal fertilizing or nitrogen starvation, as well as two different extraction options, dry or wet extraction, have been tested. The best scenario has been compared to first generation biodiesel and oil diesel. The outcome confirms the potential of microalgae as an energy source but highlights the imperative necessity of decreasing the energy and fertilizer consumption. Therefore contr...

1,372 citations


"Micro-algae cultivation for biofuel..." refers background in this paper

  • ...[12] Lardon L, Helias A, Sialve B, Steyer JP, Bernard O....

    [...]

  • ...The location of the study is in the UK, which has lower solar radiation than the other studies [12] Lardon Considers a hypothetical system consisting of an open pond raceway covering 100ha, and cultivating Chlorella vulgaris....

    [...]