scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microbiome First Approaches to Rescue Public Health and Reduce Human Suffering

30 Oct 2021-Biomedicines (Multidisciplinary Digital Publishing Institute)-Vol. 9, Iss: 11, pp 1581
TL;DR: A recent review as discussed by the authors suggests that Microbiome First medical approaches to human health and wellness could both aid the fight against non-communicable diseases and conditions (NCDs) and help to usher in sustainable healthcare.
Abstract: The is a sequential article to an initial review suggesting that Microbiome First medical approaches to human health and wellness could both aid the fight against noncommunicable diseases and conditions (NCDs) and help to usher in sustainable healthcare. This current review article specifically focuses on public health programs and initiatives and what has been termed by medical journals as a catastrophic record of recent failures. Included in the review is a discussion of the four priority behavioral modifications (food choices, cessation of two drugs of abuse, and exercise) advocated by the World Health Organization as the way to stop the ongoing NCD epidemic. The lack of public health focus on the majority of cells and genes in the human superorganism, the microbiome, is highlighted as is the “regulatory gap” failure to protect humans, particularly the young, from a series of mass population toxic exposures (e.g., asbestos, trichloroethylene, dioxin, polychlorinated biphenyls, triclosan, bisphenol A and other plasticizers, polyfluorinated compounds, herbicides, food emulsifiers, high fructose corn syrup, certain nanoparticles, endocrine disruptors, and obesogens). The combination of early life toxicity for the microbiome and connected human physiological systems (e.g., immune, neurological), plus a lack of attention to the importance of microbial rebiosis has facilitated rather than suppressed, the NCD epidemic. This review article concludes with a call to place the microbiome first and foremost in public health initiatives as a way to both rescue public health effectiveness and reduce the human suffering connected to comorbid NCDs.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and microbiome regulation of core systems biology cycles that affect NCD comorbid risk was examined.
Abstract: Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host-microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.

3 citations

Journal ArticleDOI
TL;DR: In this article , a review of the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms is presented, which is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders.
Abstract: Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Journal ArticleDOI
TL;DR: In this paper , the potential role of the Gut Microbiota in different stages of drug use disorders (DUDs) has been investigated and the effects of the GM and its metabolites on drug relapse are mainly reflected in the reward effect and drug memory.
Abstract: Drug use disorders (DUDs) not only cause serious harm to users but also cause huge economic, security, and public health burdens to families and society. Recently, several studies have shown that gut microbiota (GM) can affect the central nervous system and brain functions. In this review, we focus on the potential role of the GM in the different stages of DUDs. First, the GM may induce individuals to seek novel substances. Second, the gut microbiota is involved in the decomposition and absorption of drugs. Symptoms of individuals who suffer from DUDs are also related to intestinal microorganisms. Third, the effects of the GM and its metabolites on drug relapse are mainly reflected in the reward effect and drug memory. In conclusion, recent studies have preliminarily explored the relationship between GM and DUDs. This review deepens our understanding of the mechanisms of DUDs and provides important information for the future development of clinical treatment for DUDs.
References
More filters
Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations

Journal ArticleDOI
17 Nov 1990-BMJ

2,058 citations

Journal ArticleDOI
TL;DR: Reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus, showing how commensal skin bacteria protect against pathogens and how dysbiosis of the skin microbiome can lead to disease.
Abstract: The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S. aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S. aureus The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis These AMPs were strain-specific, highly potent, selectively killed S. aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S. aureus These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease.

683 citations

Journal ArticleDOI
TL;DR: It is concluded that, as early development (in utero and during the first years of postnatal life) is particularly sensitive to developmental disruption by nutritional factors or environmental chemical exposures, with potentially adverse consequences for health later in life, both research and disease prevention strategies should focus more on these vulnerable life stages.
Abstract: This White Paper highlights the developmental period as a plastic phase, which allows the organism to adapt to changes in the environment to maintain or improve reproductive capability in part through sustained health. Plasticity is more prominent prenatally and during early postnatal life, i.e., during the time of cell differentiation and specific tissue formation. These developmental periods are highly sensitive to environmental factors, such as nutrients, environmental chemicals, drugs, infections and other stressors. Nutrient and toxicant effects share many of the same characteristics and reflect two sides of the same coin. In both cases, alterations in physiological functions can be induced and may lead to the development of non-communicable conditions. Many of the major diseases – and dysfunctions – that have increased substantially in prevalence over the last 40 years seem to be related in part to developmental factors associated with either nutritional imbalance or exposures to environmental chemicals. The Developmental Origins of Health and Disease (DOHaD) concept provides significant insight into new strategies for research and disease prevention and is sufficiently robust and repeatable across species, including humans, to require a policy and public health response. This White Paper therefore concludes that, as early development (in utero and during the first years of postnatal life) is particularly sensitive to developmental disruption by nutritional factors or environmental chemical exposures, with potentially adverse consequences for health later in life, both research and disease prevention strategies should focus more on these vulnerable life stages.

646 citations

Journal ArticleDOI
TL;DR: GBHs are the most heavily applied herbicide in the world and usage continues to rise; Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions and regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science.
Abstract: The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

638 citations