scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics.

Manqiu Ding1, Yue Lang1, Hang Shu1, Jie Shao1, Li Cui1 
01 Jan 2021-Frontiers in Immunology (Frontiers Media SA)-Vol. 12, pp 742449
TL;DR: In this paper, the authors discuss the relationship between the microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota.
Abstract: The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors discuss emerging evidence highlighting a potential role for the gut microbiome in connecting temporal lobe epilepsy (TLE) pathogenesis and hippocampal neurogenesis, focusing in particular on mechanisms associated with neuronal excitability, neuroinflammation and gut microbial metabolites.

8 citations

Journal ArticleDOI
TL;DR: The evidence of a role of the MGB axis in epilepsy is summarized by providing an overview of the recent clinical and preclinical studies and showing how dietary modification, microbiome supplementations, and hence, microbiota alterations may have an impact on seizures.
Abstract: Abstract Epilepsy is a common neurological disease characterized by the enduring predisposition of the brain to generate seizures. Among the recognized causes, a role played by the gut microbiota in epilepsy has been hypothesized and supported by new investigative approaches. To dissect the microbiota‐gut‐brain (MGB) axis involvement in epilepsy, in vitro modeling approaches arouse interest among researchers in the field. This review summarizes, first of all, the evidence of a role of the MGB axis in epilepsy by providing an overview of the recent clinical and preclinical studies and showing how dietary modification, microbiome supplementations, and hence, microbiota alterations may have an impact on seizures. Subsequently, the currently available strategies to study epilepsy on animal and in vitro models are described, focusing attention on these latter and the technological challenges for integration with already existing MGB axis models. Finally, the implementation of existing epilepsy in vitro systems is discussed, offering a complete overview of the available technological tools which may improve reliability and clinical translation of the results towards the development of innovative therapeutic approaches, taking advantage of complementary technologies.

7 citations

Journal ArticleDOI
TL;DR: In this article , the anti-neuroinflammation effects of KD after mild traumatic brain injury (rmTBI) in adolescent mice were explored and the potential mechanisms were explored, including the inhibition of indole/AHR pathway and the downregulation of TLR4/myeloid differentiation primary response 88 (MyD88) in inflammatory cells.
Abstract: Repetitive mild traumatic brain injury (rmTBI) is associated with a range of neural changes which is characterized by axonal injury and neuroinflammation. Ketogenic diet (KD) is regarded as a potential therapy for facilitating recovery after moderate-severe traumatic brain injury (TBI). However, its effect on rmTBI has not been fully studied. In this study, we evaluated the anti-neuroinflammation effects of KD after rmTBI in adolescent mice and explored the potential mechanisms. Experimentally, specific pathogen-free (SPF) adolescent male C57BL/6 mice received a sham surgery or repetitive mild controlled cortical impacts consecutively for 7 days. The uninjured mice received the standard diet, and the mice with rmTBI were fed either the standard diet or KD for 7 days. One week later, all mice were subjected to behavioral tests and experimental analysis. Results suggest that KD significantly increased blood beta-hydroxybutyrate (β-HB) levels and improved neurological function. KD also reduced white matter damage, microgliosis, and astrogliosis induced by rmTBI. Aryl hydrocarbon receptor (AHR) signaling pathway, which was mediated by indole-3-acetic acid (3-IAA) from Lactobacillus reuteri (L. reuteri) in gut and activated in microglia and astrocytes after rmTBI, was inhibited by KD. The expression level of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) in inflammatory cells, which mediates the NF-κB pathway, was also attenuated by KD. Taken together, our results indicated that KD can promote recovery following rmTBI in adolescent mice. KD may modulate neuroinflammation by altering L. reuteri in gut and its metabolites. The inhibition of indole/AHR pathway and the downregulation of TLR4/MyD88 may play a role in the beneficial effect of KD against neuroinflammation in rmTBI mice.

6 citations

Journal ArticleDOI
TL;DR: While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR, which suggest functional changes in GIM in canine IE treatment.
Abstract: Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.

6 citations

Journal ArticleDOI
TL;DR: In this paper , a review aims to give an overview of the possible beneficial effects of the supplementation of -biotics in epilepsy treatment, including prebiotics, probiotics, symbiotic (a fair combination of both), and diet.

4 citations

References
More filters
Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: Increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease.
Abstract: Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

7,032 citations

Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations

Journal ArticleDOI
07 Oct 2011-Science
TL;DR: Alternative enterotype states are associated with long-term diet, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella) and other enterotypes distinguished primarily by levels of Bacteroide and Prevotella.
Abstract: Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.

5,174 citations

Journal ArticleDOI
TL;DR: An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics and the appropriate use and scope of the term probiotic.
Abstract: An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics. It is now 13 years since the definition of probiotics and 12 years after guidelines were published for regulators, scientists and industry by the Food and Agriculture Organization of the United Nations and the WHO (FAO/WHO). The FAO/WHO definition of a probiotic--"live microorganisms which when administered in adequate amounts confer a health benefit on the host"--was reinforced as relevant and sufficiently accommodating for current and anticipated applications. However, inconsistencies between the FAO/WHO Expert Consultation Report and the FAO/WHO Guidelines were clarified to take into account advances in science and applications. A more precise use of the term 'probiotic' will be useful to guide clinicians and consumers in differentiating the diverse products on the market. This document represents the conclusions of the ISAPP consensus meeting on the appropriate use and scope of the term probiotic.

5,114 citations

Journal ArticleDOI
26 Jan 2017-Nature
TL;DR: It is shown that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A2 astroCytes, which are abundant in various human neurodegenerative diseases.
Abstract: This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1).

4,326 citations